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Abstract

An analyst observes an agent take a sequence of actions. The analyst does not have access to
the agent’s information and ponders whether the observed actions could be justified through
a rational, Bayesian model. We show that the observed actions cannot be justified if and only
if there is a single deviation argument that leaves the agent better off, regardless of the infor-
mation. The result is then extended to allow for distributions over possible action sequences,
thereby characterizing the full empirical content of the Bayesian model. Four applications are
presented: monotonicity of rationalization with risk aversion, a test of the Bayesian model as
applied in behavioral economics, feasible outcomes in dynamic information design, and partial
identification of preferences without assumptions on information.

1 Introduction

As information arrives over time, people may take actions that seemingly go against their own past

choices. How can we judge someone’s sequence of choices without knowing what they knew? A

permissive criterion would allow for any sequence of choices that can be explained by the piecemeal

arrival of some information. The purpose of this paper is to characterize, for a general decision

problem, the sequences of choices which can be rationalized by such criteria.

We consider the following model: There is a set of states of the world Ω. The agent starts with

a prior p ∈ Δ(Ω), sees a signal s1 that provides her some information about the actual state of the

world, and then chooses an action a1. The agent then sees another informative signal s2, chooses an
action a2 and so on, until the final action aT is chosen. A terminal payoff is realized, represented

by an arbitrary function u : A ×Ω → R, where A is the set of all action sequences.
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Our aim is to characterize the empirical content of this model. To that end, we take the per-

spective of an outside analyst who knows the mapping u, but does not know the agent’s prior

p ∈ Δ(Ω) nor her information process π : Ω → Δ(S), where S is the set of all signal sequences.1

Upon observing some data about the agent’s choices, the analyst asks: could this data be generated

by optimal Bayesian behavior, for some p and π?

The definition of empirical content depends on what data the analyst can observe. We start

with the parsimonious assumption that the analyst observes a single action sequence (a1, . . . , aT ).
Such an action sequence can then be rationalized by an analyst if there is a p and π and some

optimal strategy that chooses the action sequence with positive probability.

To understand the setting and what this definition allows, consider the following simple exam-

ple:

Example 1. A CEO faces an opportunity to invest in a project with uncertain payoffs: there is

a return of 4 if the project meets favorable conditions in the future (good state) and 0 if not (bad

state). The project bears fruits on two rounds of investment, and each round of investment costs 1

unit. The CEO has three options: not invest, invest in the first round and pull back in the second,

or investment in both periods. The CEO’s payoff matrix and decision tree can be summarized as

follows:

not invest & invest &

invest pull back invest

good 0 -1 2

bad 0 -1 -2
2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

Suppose that we learn that the CEO invested in the first round, incurring the initial cost, but

then pulled back. Some might interpret that as evidence of incompetence, saying that in no state

can this sequence of actions be justified. They might say that even if the CEO was not sure about

the state of the world, not investing would surely have been a better choice. These critics would

be ignoring a simple explanation: it might be that the CEO initially received good news about the

investment, but after the first round of investment learnt that the project was likely to fail.

In Example 1, the action sequence (invest, pull back) is what we will call apparently domi-
nated—there exists another sequence of actions, (not invest, ∅), under which the agent does strictly

better in every state of the world.2 It will be easy to show that any action sequence that cannot

be rationalized is apparently dominated. However, as Example 1 shows, the converse is not true.

In fact, in Example 1, all three possible sequences of choices can be rationalized, which illustrates

1The assumption that the analyst knows u : A × Ω → R is quite flexible. We can alternatively think of a family of
utility functions uω,δ : A → R, where ω indexes a class of utility functions that the agent may learn over time, and δ is
a parameter that the agent knows but the analyst does not (see Example 2).

2Generally, an action sequence is apparently dominated if there exists another action sequence (or a lottery over
action sequences) that does strictly better in every state of the world.
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how permissive this first criterion is. But it is not vacuous and can exclude some dynamic choices.

For instance, consider the following example:

Example 2. A firm can bet on one of two technologies, X or Y . The firm can also postpone the

decision, but by doing so its payoff is discounted by a factor δ, where 0 < δ < 1. The payoff matrix

and decision tree are as follows:

x y wx wy

X 5 3 5δ 3δ

Y 3 5 3δ 5δ

5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

Note that both wx and wy are apparently dominated, which does not necessarily rule them out.3

We learn that the firm has decided to wait instead of making an immediate bet. Under what values

of δ can this choice be rationalized? By waiting, the firm can get at most 5δ. By making an

immediate decision, the firm is guaranteed to get at least 3. Hence, if δ < 3/5, waiting cannot be

rationalized.

But this is not the full story. If the firm makes an immediate decision to randomize equally

between x and y, it is guaranteed an expected payoff of 4, no matter the state. Therefore, waiting

cannot be rationalized when δ < 4/5. On the other hand, if δ > 4/5, waiting can be explained by the

following information: it could be that the firm starts with an even prior and then fully learns the

state of the world in the second period. Thus, waiting can be rationalized precisely when δ > 4/5.

More generally, an action sequence can be rationalized when there exists a prior p and an in-

formation structure π for which an optimizing agent could end up choosing that action sequence

with positive probability. Thus, to argue that an action sequence can be rationalized, it is enough

to provide a single information structure and prior that prove it to be so; to argue that an action se-

quence cannot be rationalized, it must be shown that every information structure and prior would

fail to rationalize it. In Example 2, we found a single deviation that simultaneously showed that ev-

ery information structure would fail to rationalize waiting, thereby avoiding direct consideration

of the set of all information structures.

The challenge now is: for any arbitrary set of states, actions, and utility function, in order to

show that an action sequence cannot be rationalized, can we generalize the deviation argument?

The construction of this argument through a deviation rule forms the core of our paper.

Formally, a deviation rule is an adapted mapping from action sequences to lotteries over action

sequences, D : A → Δ(A). Adaptedness simply requires that deviations today can only be a

function of past actions and past deviations, and not of future actions or deviations. In Example

1, if we map (invest, pull back) to (not invest, ∅), then adaptedness demands that we have to map

3We are using the shorthand wx for (w, x) and wy for (w, y).
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(invest, invest) also to (not invest, ∅). As a result, there exists an action sequence and a state of the

world for which the deviation makes the agent worse off. In Example 2, the (perhaps intuitively

appealing) mapping wx ↦→ x , wy ↦→ y, x ↦→ x and y ↦→ y is not adapted, and hence not a valid

deviation rule. However, the mapping wx ↦→ 1
2 x + 1

2y, wy ↦→ 1
2 x + 1

2y, x ↦→ y and y ↦→ y is

adapted, and is eventually used to show that action sequences wx and wy cannot be rationalized

if δ < 4/5.
The concept of deviation rules is bereft of information since it must respect the constraint that

the analyst may not know anything about the agent’s sequential information structure. For any

strategy of the agent σ : S → Δ(A), the composition mapping D ◦ σ = σ ′ is a new strategy

that tells the agent the following: upon observing a sequence of signals s = (s1, ..., sT ), if σ had

generated a distribution σ (s) ∈ Δ(A), now instead generate the distribution σ ′(s) ∈ Δ(A). Since
σ and D are both adapted, the new strategy σ ′ is also adapted and hence well defined.

We say that a deviation rule improves upon an action sequence if for every state of the world

it strictly increases payoffs along that action sequence without worsening payoffs elsewhere on the

decision tree. We then say that the action sequence is truly dominated by this proposed deviation

rule. In Example 1, the action sequence (invest, pull back) cannot be improved upon without

worsening payoffs along the rest of the decision tree and hence is not truly dominated. On the

other hand, in Example 2 the action sequences wx and wy can be improved upon by the deviation

rule described above without tinkering with payoffs elsewhere and hence are truly dominated.

Our main result, Theorem 1, establishes the following equivalence: An action sequence cannot be

rationalized if and only if it is truly dominated.

The theorem can be viewed as a form of duality—it replaces the “for all” quantifier with the

“there exists” quantifier and vice-versa. To show that an action sequence can be rationalized, the

analyst can construct one information structure for which the action sequence receives positive

weight under an optimal strategy. In order to show that an action sequence cannot be rationalized,

the analyst can now construct one deviation rule that dominates it.4

By delineating the sequences of actions that cannot be rationalized, Theorem 1 settles the ques-

tion of empirical content when a single action sequence is observed. This is a minimal data re-

quirement that allows us to make predictions even for an individual agent. But this minimality

means that the theory may not be rejected. In some cases, such as Example 1, the theory cannot

be rejected by any observation. It is then natural to look for finer predictions coming from richer

datasets.

Theorems 2 and 3 concern data in the form of entire distributions, such as what can be obtained

from a large sample of identical agents with independent information. In this context, Theorem 1

pins down the support of any distribution of action sequences that an analyst could observe in the
4Note that if T = 1, the set of actions which can be rationalized are precisely those that are a best-response to some

belief over states. The theorem then reduces to the celebrated Wald-Pearce Lemma (Wald [1949] and Pearce [1984]),
which states that the actions which are never a best-response, and hence cannot be rationalized, are strictly dominated
by some mixed strategy. Here, our rule would recommend to deviate from the dominated action to the dominating
mixed strategy and to keep the identity mapping elsewehere. Adaptedness of course has no bite in the static model.
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population. Now, observing the choices of an entire population, can the analyst go further and

ask which distributions can be rationalized?

More concretely, in Example 1, we argued that the action sequence (invest, pull back) can be ra-

tionalized. It is easy to see that it cannot be rationalized with probability one, that is, no sequential

information structure can induce a rational firm to take this action sequence for sure; it might as

well choose (not invest, ∅) no matter the signals it observed. The population interpretation is that

there must be an upper bound on the fraction of firms that choose (invest, pull back) in the data set.

Similarly, in Example 2, what is the upper bound on the fraction of agents that choose wx or wy
as a function of δ? The next two results help the reader answer these questions by characterizing

the family of distributions over action sequences that can be rationalized.

Suppose the analyst observes chosen action sequences along with the associated realized states

for a large number of decision problems. For Example 1, this data requirement would collate

entries in one of six possible bins:

(not invest, ∅), good (invest, pull back), good (invest, invest), good
(not invest, ∅),bad (invest, pull back),bad (invest, invest),bad

The objective now is to explain when a joint distribution γ ∈ Δ(A × Ω) can be rationalized. For

its dual counterpart, we say that a deviation rule dominates γ if it generates a strict improvement

in expected payoffs. We call this average dominance, where the expectation over actions and states

is taken for the distribution generated by the composition map between the deviation rule and

whatever strategy a representative agent follows. Theorem 2 then provides the dual characteriza-

tion that a joint distribution cannot be rationalized if and only if it is averagely dominated. This

result boils down to a set of inequalities which correspond to obedience constraints familiar from

information design (see Bergemann and Morris [2016]), extended here to a dynamic environment.

In some scenarios, the analyst may only observe the set of action sequences but not the real-

ized states. So, in the context of Example 1, the analyst records which of the three possible action

sequences were chosen by each firm in the data set, but does not know what were the underly-

ing fundamentals associated with each of those decisions. The objective now is to explain when

a marginal distribution γ ∈ Δ(A) can be rationalized. The notion of dominance that pins down

the duality is more nuanced. It combines ideas on dominance used for Theorems 1 and 2 result-

ing in an intermediate notion of dominance. It considers deviation rules that take the worst-case

improvement over states for each action sequence, and then averages these values over action se-

quences using γ̄. Theorem 3 states that a distribution γ cannot be rationalized if and only if it is

intermediately dominated.

For Example 1, we can conclude that 2⁄3 is the upper bound on the fraction of firms that can

rationally be seen making the choice (invest, pull back). For Example 2, we show that the maximal

fraction of agents that can rationally be seen to choose to wait in the first period is given by 0 when

δ < 4/5 and by 3 − 2/δ when δ > 4/5, which converges to 1 as δ converges to 1. There are two key
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steps here: the construction of the appropriate deviation rule for values greater than the upper

bound and a rationalizing information structure for values below the upper bound.

Four applications are presented: First, by characterizing the empirical content of the model,

the three theorems provide a clear method for testing for Bayesian rationality. If, for instance, more

than two-thirds of firms in the data set facing Example 1 choose (invest, pull back), the Bayesian
model is rejected. This approach, it is shown, unifies and generalizes the rejection of the standard

Bayesian model in various studies in behavioral economics: for instance, for gym membership

contracts in DellaVigna and Malmendier [2006] and mobile phone contracts in Grubb [2009].

Second, if one assumes Bayesian rationality, the results can be used to partially identify parame-

ters from the agent’s preferences, without imposing assumptions on information. For instance, the

firm’s choice to wait in Example 2 helps identify the cost of waiting to be δ > 4
5 . More generally,

for a population of firms, we show that a distribution that puts weight γw > 0 on wx (or wy )
generates a lower bound given by δ > max

{
2

3−γw ,
4
5

}
. This insight is formalized more generally

in a partial identification result that speaks to recent work in applied econometrics. For instance,

in identifying preference parameters from bids in auctions (Syrgkanis, Tamer, and Ziani [2021])

and entry decisions in supermarkets (Magnolfi and Roncoroni [2023]) without imposing strong

assumption on information structure.

Next, besides these practical applications, our framework can also be used conceptually. As an

illustration, we show that the set of action sequences that can be rationalized is an increasing func-

tion of risk aversion—the more risk averse the agent, the harder it is to rule out action sequences.

This generalizes a similar observation by Weinstein [2016] and Battigalli, Cerreia-Vioglio, Mac-

cheroni, and Marinacci [2016] from static to dynamic. Deviation rules are again critical in the

argument, and it is unclear how to prove such a result without using them.

Finally, deviation rules allow us to write dynamic obedience constraints, providing a dual

method to solve dynamic information design problems. This is illustrated through a simpler ver-

sion of the moving the goalposts model studied by Ely and Szydlowski [2020], where the agent is

induced to take an apparently dominated action sequence with maximal possible probability.

These applications and their connections to the literature are presented in Section 7. Given the

universality of the deviation argument, we hope a wider set of applications will emerge in decision

theory, applied econometrics, behavioral economics, and information and mechanism design.

2 Model and definitions

2.1 Notation

A stochastic map from X to a finite set Y is a function α : X → Δ(Y ), where Δ(Y ) is the set

of probability distributions over Y . We represent the probability assigned to y at the point x by
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α(y |x). The composition of two stochastic maps α : X → Δ(Y ) and β : Y → Δ(Z) is given by

β ◦ α(z |x) =
∑︁
y∈Y
β (z |y)α(y |x).

We can think of a lottery as a stochastic mapping whose domain is a singleton. Therefore, given

α ∈ Δ(Y ) and β : Y → Δ(Z), we write

β ◦ α(z) =
∑︁
y∈Y
β (z |y)α(y)

to be the probability with which z is chosen by β ◦ α.
For a real-valued function u : Y → R and for a lottery α ∈ Δ(Y ), we denote by u (α) =∑

y∈Y
α(y)u (y) the expected value of u (·) under the distribution α.

Throughout the text, we consider a finite number of time periods t = 1, . . . ,T . For a collection

of sets (X t )Tt=1, we will use the following notation

X t =

t∏
τ=1

Xτ X =

T∏
τ=1

Xτ

with elements xt ∈ X t and x ∈ X . Finally, a stochastic map α : X → Δ(Y ) is said to be adapted if
the marginal probability of the first t terms of y depends only on the first t terms of x; formally,

it is adapted if the function∑︁
yt+1,...,yT

α(y1, . . . , yt , yt+1, . . . yT |x1, . . . , x t , x t+1, . . . , xT )

is constant in x t+1, . . . , xT .

2.2 The Bayesian model

In each time period t , the agent chooses an action at from a finite set At . Payoffs are determined

after period T by a utility function u (a, ω), which depends on the entire action sequence a =

(a1, . . . , aT ) ∈ A and a potentially unknown state of the world ω drawn from a finite set Ω. There

are no other restrictions on the utility function.

The agent is informed about the underlying state of the world over time through a sequence

of signals. The timeline of the dynamic decision problem is expressed in Figure 1. Every period,

before taking an action, the agent observes a signal that is (potentially) correlated with the state

of the world and with the signals she has observed in the past. Formally, the sequence of signals is

generated by a sequential information structure:

Definition 1. A sequential information structure is a sequence of finite sets of signals (St )Tt=1 and
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Information

π : Ω→∆(S1×·· ·×ST )

Nature
draws ω

Agentsees s1

Agent
chooses a1

Agentsees s2

Agent
chooses a2

Agent gets
u(a,ω)

Henrique de Oliveira and Rohit Lamba Rationalizing Dynamic Choices

Figure 1: The timeline of signals and actions

a stochastic mapping π : Ω → Δ (S).5

We will often refer to the sequential information structure simply as π; the set of signals shall

be implicit. The agent’s strategy maps each sequence of signals into a lottery over actions every

period, with the restriction that the agent cannot base the choice of an action on signals that have

not yet been revealed, which we call adaptedness.

Definition 2. A strategy for the agent is an adapted stochastic mapping σ : S → Δ (A).6

Given the sequential information structure π and agent’s strategy σ, the probability that the

agent takes a given sequence of actions in each state of the world ω is given by σ ◦ π (a|ω). Finally,
given a prior p ∈ Δ(Ω), she can evaluate her expected payoff:

U
(
σ, π, p

)
=
∑︁
ω∈Ω

p (ω)
∑︁
a∈A
σ ◦ π (a|ω) u (a, ω).

The agent’s problem then is to choose an optimal σ given π and p. Throughout the paper, we refer
to this model of decision making as the Bayesian model.

Our goal is to characterize the empirical content of this model. To that end, we say that an

action sequence can be rationalized if it can be chosen with positive probability by an optimizing

agent with some information structure and some prior.

Definition 3. An action sequence a ∈ A can be rationalized if there exists a triplet
(
σ, π, p

)
such that:

1. σ ∈ argmax
σ̂

U (σ̂, π, p) and

2. σ ◦ π ◦ p (a) > 0.7

This definition is permissive in the sense that an action sequence is considered rationalized

even if its probability is very small, so long as it is positive. Moreover, because the agent sees a

signal before choosing the first action, any two interior prior beliefs p and p ′ result in the same

5We can equivalently define the sequential information structure period-by-period as follows. Let π = (πt )Tt=1 be
a family of stochastic mappings where π1 : Ω → Δ(S1), and πt : Ω × S t−1 → Δ(St ) ∀ 2 ≤ t ≤ T . Except for zero
probability events, we can deduce that the two definitions are equivalent. The minor distinction does not affect the
agent’s utility and is therefore irrelevant for our results. For a proof, see Lemma 3 in de Oliveira [2018].

6As with information structures, an equivalent way to think of the agent’s strategy is a family of stochastic mappings
σ = (σt )Tt=1, where σ1 : S1 → Δ(A1), and σt : S t × At−1 → Δ(At ) ∀ 2 ≤ t ≤ T . It is possible to deduce one
formulation from the other.

7Here σ ◦ π ◦ p (a) = ∑
ω
σ ◦ π (a|ω) p (ω) (see Section 2.1).

8

Electronic copy available at: https://ssrn.com/abstract=3332092



criterion, since we can always consider a signal distribution which updates from p to p ′ with

positive probability. In that sense, the choice of prior, in addition to the choice of the sequential

information structure, arms the analyst with more instruments than she requires to rationalize an

action sequence. However, fixing a prior that puts zero probability on some states loses generality,

since updated beliefs must also put zero probability on those states.8

To deduce that an action sequence cannot be rationalized, the analyst needs to work through

all possible pairs (π, p), and show that the corresponding optimal strategy σ will not pick that

action sequence with positive probability. Since the set of all sequential information structures is

quite large, this poses a challenge. Our main goal is to find an alternative way to characterize the

set of action sequences that cannot be rationalized.

A final aspect of the model is the knowledge set of the outside analyst. Of course, the analyst

observes the action sequence in Definition 3. In addition, it is assumed that the analyst knows

some aspect of the mapping u : A×Ω → R. A simple way to understand the permissiveness of the

claim is to rewrite the utility function as uω,δ : A → R, where ω ∈ Ω can embed a class of utility

functions that the agent learns over time, and δ ∈ D, as we saw in Example 2, is a parameter to be

estimated that the agent knows but the analyst doesn’t (see also Section 7.4) . This incorporates

two subtleties: first that model can accommodate a large class of possible utilities through the set

Ω, and second the utility functions can accommodate missing parameters, which the analyst must

elicit from the choice data. Of course, for the model to generate some empirical content, we have

to impose some structure on preferences for we are not imposing any structure whatsoever on

information.

3 The static problem

To fix ideas, it is easiest to start from the simple case of T = 1. In this static problem, the agent

starts with a prior p, observes a signal s , and takes an action a, resulting in a payoff u (a, ω). Letting

q (ω |s) =
π (s |ω)p (ω)
π ◦ p (s)

denote the posterior belief of the agent upon seeing s , we can rewrite the agent’s expected utility

from choosing strategy σ as:

U (σ, π, p) =
∑︁
ω,a,s

u (a, ω)σ (a |s)π (s |ω)p (ω) =
∑︁
ω,a,s

u (a, ω)σ (a |s)q (ω |s)π ◦ p (s). (1)

8This logic can be pushed further: to determine the set of actions that can be rationalized going forward, the only
relevant aspect of a belief is the set of states that have zero probability. So, a behavioral model where agents may violate
the martingale condition of beliefs could rationalize the same set of action sequences as the Bayesian model, as long as its
belief process agrees with the Bayesian belief process on which states have zero probability. We are grateful to Andrew
Caplin for pointing this out to us.

9

Electronic copy available at: https://ssrn.com/abstract=3332092



Thismakes the agent’s problem separable in s , so it reads: for each s , choose an action a tomaximize∑︁
ω∈Ω

u (a, ω)q (ω |s). (2)

Therefore, an action can be rationalized if and only if it is a best-response to some posterior belief
q . Hence, to find if an action can be rationalized, we can restrict attention to the case where

the agent starts with a “prior q” and learns nothing thereafter. In particular, if an action can be

rationalized, there is a triplet (σ, π, p) where σ is optimal and chooses that action with probability

1. To summarize:

Remark 1. Let T = 1. Then the following statements are equivalent:

1. a is a best-response to some belief q;

2. There exists (σ, π, p) such that σ maximizes (1) with σ (a) > 0.

3. There exists (σ, π, p) such that σ maximizes (1) with σ (a) = 1.9

An elegant duality result by Wald [1949] and Pearce [1984] characterizes what it means for an

action to be rationalized in the static model. The result states that, in a two-player game,

Lemma 1 (Wald-Pearce). An action is never a best response if and only if it is strictly dominated by
some mixed strategy.

In our context, think of a game where Player 1 is our agent, choosing action a, and Player

2 is Nature, choosing state ω. A mixed strategy α ∈ Δ(A) strictly dominates a if and only if

u (α,ω) > u (a, ω) for all ω ∈ Ω, where u (α,ω) is the expected utility of following that mixed

strategy. An action a is then said to be strictly dominated if there exists a mixed strategy α that

strictly dominates it.

Given Remark 1, a is never a best response if and only if it cannot be rationalized. Therefore

Corollary 1. For T = 1, an action a cannot be rationalized if and only if it is strictly dominated.

The key idea behind theWald-Pearce lemma is that it is possible to invert the order of quantifiers

in the statement “for all q ∈ Δ(Ω), there exists α ∈ Δ(A) such that Eq [u (a, ω)] < Eq [u (α,ω)]”.
This can be seen, for example, by constructing a zero-sum game where nature picks the belief q
and the agent picks an alternative action α (possibly mixed). Using the min-max theorem, we get

that

min
q

max
α
Eq [u (α,ω) − u (a, ω)] = max

α
min
q
Eq [u (α,ω) − u (a, ω)] .

9It is worth trying to extrapolate the contents of Remark 1 to the case of T > 1. It is easy to see that the equivalence
between parts 2 and 3 no longer holds in Example 1. Specifically, (invest, pull back) can be rationalized with positive
probability, but never with probability 1. Moreover, if we simply invoke a static information structure wherein the agent
learns all possible information prior to taking all the actions, the same example shows that parts 1 and 2 of Remark 1
fail to be equivalent as well. In a nutshell, the sequential structure of the problem matters.
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When a cannot be rationalized, the above expression is positive and bounded away from zero.

More specifically, the positivity of the left-hand side is equivalent to a not being rationalized and

the positivity of the right-hand side is equivalent to it being strictly dominated.

The two theoretical challenges for us therefore are (i) to formulate the right notion of what

it means for an action sequence to be dominated in the sequential model, and (ii) to establish the

appropriate inversion of quantifiers for our framework. We start first by defining the appropriate

notion of domination in the sequential model.

4 Deviation rules and true dominance

4.1 A necessary but not sufficient condition

An obvious notion of dominance that does not rely on information structures is the following:

a sequence of actions is “dominated” if there exists another sequence of actions that does strictly

better in every state of the world. We will refer to this as apparent dominance. Recollect that the
payoff from a randomized action sequence α ∈ Δ(A) is denoted by u (α,ω) =

∑
a∈A
α(a)u (a, ω),

where α(a) refers to the probability of action sequence a under α.

Definition 4. An action sequence a ∈ A is apparently dominated if there exists a randomized action
sequence α ∈ Δ(A) such that

u (α,ω) > u (a, ω) ∀ ω ∈ Ω.

Every action sequence that cannot be rationalized is apparently dominated, making it a neces-

sary condition for our endeavored characterization. That is, if an action sequence is not apparently

dominated, we can always find an information structure such that the optimal strategy correspond-

ing to it chooses the action sequence with positive probability. The following Lemma formalizes

the claim.

Proposition 1. Suppose a ∈ A cannot be rationalized. Then, amust be apparently dominated.

Proof. Suppose a is not apparently dominated. By Lemma 1, the Wald-Pearce Lemma, amust be a

best-response to some static “belief p”. Letting p be the prior and π be completely uninformative,

the best response to (p, π) is the strategy that always chooses a. �

Even though apparent dominance is a demanding condition, it is possible for an apparently

dominated action sequence to be rationalized. In Example 1, the action sequence a1 = invest and
a2 = pull back is apparently dominated by the action sequence a1 = not invest and a2 = ∅. Yet it is
easy to construct an information structure where it will be optimal for the agent to choose (invest,
pull back) with positive probability.10

10The first period signal tells the agent that the good state is highly likely, only to reveal in period two through the
second signal that the bad state is now more likely.
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Notice that the apparent dominance of (invest, pull back) can be established simply by com-

paring its payoffs with that of not invest. The payoffs for (invest, invest) are therefore irrelevant.
Yet, when the good state is very likely, these payoffs are precisely what motivates the agent to do

the initial investment. When we see that the agent chose (invest, pull back), the fact that the agent
could have ended up choosing (invest, invest) makes those payoffs relevant.

Therefore, something more than apparent dominance is required for an action sequence to

not be rationalized. In addition to improving upon the action sequence under consideration, that

“more” needs to evaluate other sequences of actions that the agent might expect to have chosen.

This motivates the definition of a deviation rule, which prescribes not only how the agent should

deviate from the observed action sequence, but in every other possible action sequence as well.

4.2 Deviation rules and true dominance

A deviation rule is an adapted mapping D : A → Δ(A), where recollect that being adapted means

that the marginal distribution on At , the (potentially random) deviation strategy for the first t
periods, depends only on At , the first t elements of the original strategy from which the agent is

deviating. We can think of the deviation rule as a list of alternative actions the agent would take

as a function of the actions she originally intended to take. Importantly, a deviation rule is a fully

prescribed plan so that if σ is the original strategy, then D ◦ σ (a|s) too is a well-defined strategy.

Now, we are in a position to define the appropriate notion of dominance for our model.

Definition 5. A deviation rule D : A → Δ (A) dominates an action sequence a if

1. u (D (a) , ω) > u (a, ω) for all ω ∈ Ω.

2. u
(
D

(
b
)
, ω

)
> u

(
b, ω

)
for all b ∈ A and ω ∈ Ω.

We say that a is truly dominated if there exists a deviation rule that dominates it.

The first part of the definition requires that the action sequence to be dominated is strictly

upon. The second part requires that the payoff induced by the deviation rule shouldn’t become

worse for any other action sequence in any state. Moreover, there’s no visible time dimension in

the definition above; time is implicit in the condition that D must be adapted. ForT = 1, the same

definition applies, but the condition that D is adapted becomes vacuous and so does the second

part of the definition. In that case, if a is strictly dominated by α, we can define a deviation rule

Dα which takes a to α and does not change any other actions. Dα then dominates a according to

the definition above.

When T > 1, the adaptedness restriction prevents the construction of such a simple deviation

rule—if D specifies a change for the first action in the sequence a, then it must specify the same

change for all sequences b which share that same first action, and so on. The second condition and

the embedded notion of adaptedness in the definition impose meaningful restrictions when T > 1,

encapsulating the distinction between true and apparent dominance.
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4.3 Discussion

To better grasp the definitions of deviation rule and true dominance, here we illustrate the concepts

in the context of our examples. For the decision trees depicted in Figure 2, each complete sequence

of actions corresponds to a terminal node. Thus any mapping from sequences of actions into

sequences of actions is depicted as arrows between terminal nodes.

2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

(a) Not adapted

2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

(b) Does not always improve

5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

(c) Not adapted

5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

(d) Does not always improve

Figure 2: Deviation rules for Examples 1 and 2

Figures 2a and 2b depict the decision tree for Example 1. Since the sequence of actions (invest,
pull back) is apparently dominated by not invest, we may try to find a deviation rule that dominates

(invest, pull back). The simplest such proposal would be that the agent should choose not invest
whenever she was going to choose (invest, pull back), as shown in Figure 2a. However, at the time

when the agent is choosing to invest, she may not yet know whether she will pull back in the

future. The impracticality of this proposal is reflected in the fact that this “deviation rule” is not

adapted. If we want the agent to never invest whenever she was going to choose (invest,pull back),
we must also recommend that she never invest when she was going to choose (invest, invest), as in
2b. But although the deviation rule in 2b is now adapted, it worsens payoffs for the action sequence

(invest, invest) in the good state; thus, it violates part 2 of Definition 5.

Similarly, in the waiting example, the “deviation rule” depicted in Figure 2c is not adapted,

since it represents the infeasible advice “whatever you would choose in the second period, choose

the same in the first period”. The deviation rule in Figure 2d represents the advice “if you were
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3, 0

l

0, 3

r

L

1, 4

l

4, 1

r

R

(a) Adapted and improves upon Ll & Lr

3, 0

l

1, 1

r

L

2, 2

l

3, 1

r

R

(b) Adapted and improves upon Lr

Figure 3: Deviation rules with history dependence

thinking about waiting, choose x instead”, which is adapted. When δ < 3
5 , it dominates wx

and wy, but when δ > 3
5 it does not dominate wx nor wy, because x may give a strictly lower

payoff than wy. For the tightest possible statement, we therefore constructed the deviation rule

wx ↦→ 1
2 x + 1

2y, wy ↦→ 1
2 x + 1

2y, x ↦→ y and y ↦→ y which (simultaneously) truly dominates wx
and wy if and only if δ < 4

5 .

Our examples so far have featured simple first-period deviations. Figure 3 shows how history-

dependent deviations may be required to establish that an action sequence is truly dominated. In

Figure 3a, both (L, l ) and (L, r ) are truly dominated by the deviation rule depicted. Despite having

the same first period action, (L, l ) and (L, r ) are deviated to different action sequences: (R, r ) and
(R, l ), respectively; hence the history dependence in deviations. Analogously, (Lr ) is shown to be

truly dominated in 3b by the same deviation rule, but note that here (L, l ) is not truly dominated.

5 The main result

We now state our main result.

Theorem 1. A sequence of actions cannot be rationalized if and only if it is truly dominated.

The theorem provides a tight characterization of the set of action sequences that cannot be

rationalized. Through its duality formulation, it simplifies their identification by requiring the

analyst to construct one deviation rule as opposed to treading through the family of all sequential
information structures.

The steps involved in establishing this result are divided into three subsections. First, we state

the obedience principle: any sequential information structure is equivalent to a canonical informa-

tion structure, wherein at each point in time the agent is recommended an action which is in her

own interest to follow. Second, we state aGeneralized Separation Lemma that will allow us to invert

the order of quantifiers. Third, we put all the arguments together and prove the result.
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5.1 Obedience principle

The set of all possible signals can be a very large space to workwith. We can in fact restrict attention

to a set of canonical signal structures, without any loss of generality. In keeping with the tradition

in mechanism design, we call this result the obedience principle. It is analogous to the obedience

principle in Myerson [1986], Forges [1986], Kamenica and Gentzkow [2011], and Bergemann and

Morris [2016].

First, we define the subset of canonical sequential information structures. In what follows, let

I dA refer to the identity mapping from A to A.

Definition 6.
(
σ, π, p

)
is an obedient triple if S = A and σ = I dA.

An obedient triple is given by a prior, an information structure which recommends an action,

and a strategy of the agent which always obeys the recommendation. When an action sequence

can be rationalized with an obedient triple, we say that it has an obedient rationalization. We can

now state and prove the Obedience Principle.

Lemma 2 (Obedience principle). If a can be rationalized, then it has an obedient rationalization.

Proof. Suppose that a is rationalized by
(
σ, π, p

)
. We show that a is also rationalized by

(
I dA, σ ◦ π, p

)
.

First, note that, in the information structure σ ◦ π, the set of signals is A, so strategies become

deviation rules. Second,

σ ◦ π ◦ p (a) = I dA ◦ (σ ◦ π) ◦ p (a)

by associativity of composition and I dA is adapted. Hence, if a is chosen with positive probability

under
(
σ, π, p

)
, it also is under

(
I dA, σ ◦ π, p

)
. Now we must show that I dA will be optimal

for
(
σ ◦ π, p

)
, whenever σ is optimal for

(
π, p

)
. Suppose that an alternate strategy D : A →

Δ(A) does better than I dA when facing
(
σ ◦ π, p

)
. In terms of payoff, it is easy to check that

U
(
I dA, σ ◦ π, p

)
= U

(
σ, π, p

)
and U

(
D, σ ◦ π, p

)
= U

(
D ◦ σ, π, p

)
. So if

(
D, σ ◦ π, p

)
gives a

higher expected payoff than
(
I dA, σ ◦ π, p

)
, then the deviation

(
D ◦ σ, π, p

)
gives a higher payoff

than
(
σ, π, p

)
as well, implying that σ was not optimal. �

5.2 Generalized Separation Lemma

The standard min-max theorem used to prove the Wald-Pearce lemma in Section 3 cannot be di-

rectly applied, one of the reasons being that the argument under “max” is not a compact set. To

circumvent this problem, we state and prove a version of the hyperplane separation result that

helps us flip the order of quantifiers in the final step of the proof of Theorem 1.

Lemma 3 (Generalized Separation Lemma). Let X ⊂ Rm be an evenly convex polyhedron and
Y ⊂ Rn be a polytope.11 If f : Rm × Rn → R is affine in each variable, then the following statements

11An evenly convex polyhedron is a set defined by a finite number of linear inequalities, weak or strict. A poly-
tope is the convex hull of finite number of points or, equivalently, a compact set defined by finitely many weak linear
inequalities.
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are equivalent:

1. For every x ∈ X, there exists y ∈ Y such that f
(
x, y

)
> 0;

2. There exists y ∈ Y such that, for every x ∈ X, f
(
x, y

)
> 0.

In our setup, the hyperplane argument is somewhat simplified by the fact that we operate in a

finite setting, and thus, the problem reduces to a linear program, which is essentially what Lemma

3 captures.

5.3 Proof of Theorem 1

The “only if” direction: if a is truly dominated, it cannot be rationalized. Let D be a deviation rule that

dominates a. We show that any strategy that plays a with positive probability cannot be optimal.

Indeed, given an arbitrary (σ, π, p), we can define an alternative strategy σ̃ = D ◦σ. Now consider

how the expected payoff of the agent changes by switching from σ to σ̃. Let γ denote the joint

distribution over (b, ω) which is induced by (σ, π, p). The difference in payoffs then becomes

U (σ̃, π, p) −U (σ, π, p) = Eγ [u (D (b), ω) − u (b, ω)]

For each (b, ω), this difference is non-negative, with strict inequality for b = a. Hence if γ puts

positive probability on a, the overall difference will be positive, meaning that the agent benefits

strictly from deviating to σ̃. The exact inequalities that show σ̃ to be an improvement over σ are

presented in Claim 1 in the appendix.

The “if” direction: if a cannot be rationalized, it is truly dominated. Given an action sequence a
which cannot be rationalized, we must find a deviation rule D that dominates it. Letting Θ(a) =
{(σ, p, π) |σ ◦ π ◦ p (a) > 0}, we can write the statement “a cannot be rationalized” as

∀ (σ, π, p) ∈ Θ(a) ∃ σ̂ s.t. U (σ̂, π, p) > U (σ, π, p).

By the Obedience Principle (Lemma 2), the statement “a cannot be rationalized” is equivalent
to the statement “a cannot be rationalized by an obedient triple”. This means that we can, without

loss, restrict attention to π : Ω → Δ(A) and to σ = I dA in the statement above. Moreover,

given that the set of signals is now A, all other strategies σ̂, are simply the set of all deviation rules

D : A → Δ(A). Incorporating these, we get the equivalent statement

∀ p ∈ Δ(Ω) & π : Ω → Δ(A) s.t. π ◦ p (a) > 0 ∃ D : A → Δ(A) s.t. U (D, π, p) > U (I dA, π, p).

Our goal is to switch the order of quantifiers in this statement, which would then produce the

deviation rule we seek. Notice that trying to use a min-max theorem to achieve this inversion of
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quantifiers would run into multiple problems. That is, if we wrote

inf
(π,p) s.t.
π◦p (a)>0

max
D

[
U

(
D, π, p

)
−U

(
I dA, π, p

) ]
the objective function would not be linear in the vector (π, p), the set we are minimizing over

would not be compact, and the value of the infimumwould actually be zero. Therefore, we invoke

the Generalized Separation Lemma to do the needful. To use the lemma, we simplify the problem

further.

First, the objective function can be made linear through a simple change of variables: Let

γ ∈ Δ(A × Ω) be the joint distribution on A × Ω induced by the pair (π, p). That is, γ (b, ω) =

π (b|ω)p (ω). The set of joint distributions we are considering consists of those γ whose marginal

probability on a is positive. Doing this, the objective function becomes

Eγ [u (D (b), ω) − u (b, ω)],

which is bilinear in (γ,D).
Finally, the statement that a cannot be rationalized can be rewritten as

∀ γ ∈ Δ(A ×Ω) with γ (a) > 0,∃ D : A → Δ(A) s.t. Eγ [u (D (b), ω) − u (b, ω)] > 0.

Let X = {γ ∈ Δ(A ×Ω) s.t. γ (a) > 0},Y =
{
D : A → Δ(A) s.t. D is adapted

}
, and f ≡ Eγ [u (D (b), ω)−

u (b, ω)]. In Claim 2 in the appendix, we show that X is an evenly convex polyhedron,Y is a poly-

tope and f is an affine function in γ and D . Thus, invoking Lemma 3, we can flip the order of

quantifiers to get:

∃ D : A → Δ(A) s.t. ∀ γ ∈ Δ(A ×Ω) with γ (a) > 0 : Eγ [u (D (b), ω) − u (b, ω)] > 0.

Let D∗ be a such deviation rule. By construction, D∗ dominates a, and thus a is truly dominated.

5.4 One deviation to rule them all

Although we proved Theorem 1 by showing that there exists a deviation rule for each truly domi-

nated action sequence, it is easy to find a single deviation rule that simultaneously dominates every

truly dominated action sequence. Analogously, it is possible to find a single information structure

that simultaneously rationalizes every action sequence that is not truly dominated. Here we prove

the existence of such a deviation rule and information structure:

Corollary 2. Let A ⊆ A denote the set of truly dominated action sequences. Then

1. there exists a deviation rule D that simultaneously dominates every action sequence in A and

2. there exists a triple
(
σ, π, p

)
that simultaneously rationalizes every action sequence in A\A.
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Put together, this means that the entire set of truly dominated action sequences can be char-

acterized by one pair, consisting of a single information structure and a single deviation rule. To

prove part 1, we simply take D to be a strict convex combination of each deviation rule corre-

sponding to each action sequence that is truly dominated. To prove part 2, we take a strict convex

combination of all obedient rationalizations of the elements in A\A.

Broadly, the idea for both constructions boils down to the fact that Definition 3 required the

action to be picked with any positive probability. Therefore, as long as the deviation rule that was

picked to truly dominate an action sequence is picked with positive probability in part 1 of Corol-

lary 2, it will improve upon the expected payoff of the agent. Similarly, if the information structure

that rationalizes an action sequence is picked with positive probability in part 2 of Corollary 2,

the “compound lottery” will also pick that action sequence with positive probability.

6 Rationalizing distributions

In the previous section, we characterized the empirical content of the Bayesian model when the

analyst observes a single action sequence. We now consider a situation where the analyst has

information about a large population of agents, so that his data consists of an entire distribution

of chosen action sequences. Two duality results are presented which assume varying levels of data

availability. Deviation rules, once again, play a central role in the characterizations. We end the

section with a brief discussion on a comparison between these results with Theorem 1.

6.1 Distributions over actions and states

At first, we assume that the analyst has access to a rich dataset which records both action sequences

and corresponding realized states. That is, the analyst observes an entire joint distribution γ ∈
Δ(A×Ω). The distributions that can result from a Bayesian model can then be defined modifying

Definition 3.

Definition 7. A distribution γ ∈ Δ(A ×Ω) can be rationalized if there exists
(
σ, π, p

)
such that

1. σ ∈ argmax
σ̂

U
(
σ̂, π, p

)
, and

2. γ (a, ω) = σ ◦ π (a|ω) · p (ω) ∀ a ∈ A, ω ∈ Ω.12

Thus, a joint distribution γ is rationalized if there exists a sequential information structure

and a prior such that, in best responding to them, the agent’s optimal strategy generates γ. In

the context of Example 1, we are assuming here that a large number of firms face some prior and

sequential information structure, and in best responding to it, a joint distribution over the two

states and three possible action sequences is produced, which the analyst seeks to rationalize.

12Note that for a fixed γ ∈ Δ(A × Ω), the prior p is necessarily its marginal on Ω. This is implicit in part 2 of the
definition. We keep the choice of the triplet

(
σ, π, p

)
in the definition to maintain consistency with Definition 3.
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Our notion of dominance must take into account the distributional structure of information

available to the analyst. Earlier, we required the deviation rule to improve upon every action

sequence and state. Since the criterion of rationalization is now stronger, the notion of dominance

must be weaker. Therefore, we look at the average improvement brought about by a deviation rule.

Definition 8. A deviation rule D : A → Δ (A) dominates a distribution γ ∈ Δ(A ×Ω) if∑︁
a,ω

[u (D (a) , ω) − u (a, ω)] γ (a, ω) > 0.

We say that γ is dominated on average if there exists a deviation rule that dominates it.

To understand the appropriateness of this notion of dominance, we can again follow the logic

of the obedience principle (Lemma 2): If γ can be rationalized, it must be possible to find an

obedient rationalization. Under such an obedient rationalization, any alternative strategy σ̂ is an

adapted mapping from A to A, and hence a deviation rule. 13 If, however, γ cannot be rationalized,

then the candidate obedient strategy is not optimal, and there must be an alternative strategy—a

deviation rule—that improves upon it. This proves the following dual characterization.

Theorem 2. A distribution γ ∈ Δ(A × Ω) cannot be rationalized if and only if it is dominated on
average.

Proof. The “only if” direction: if γ is dominated on average, it cannot be rationalized. Let D be a

deviation rule that dominates γ. We show that any strategy that produces γ as the joint distribution

over A × Ω cannot be optimal. Suppose (σ, π, p) induces γ, and define an alternative strategy

σ̃ = D ◦ σ. The difference in payoffs then becomes

U (σ̃, π, p) −U (σ, π, p) = Eγ [u (D (b), ω) − u (b, ω)] .

which is positive since D dominates γ. Hence γ cannot be induced by an optimal strategy and

cannot be rationalized.

The “if” direction: if γ cannot be rationalized, it is dominated on average. Fix a γ ∈ Δ(A ×Ω) which

cannot be rationalized. We must find a deviation rule D which shows that it is dominated on

average. Letting Θ(γ) = {(σ, π, p) |γ (a, ω) = σ ◦ π (a|ω) · p (ω)}, we can write the statement “γ

cannot be rationalized” as

∀ (σ, π, p) ∈ Θ(γ) ∃ σ̂ s.t. U (σ̂, π, p) > U (σ, π, p).

Following the same steps as in the proof of Theorem 1, we use the obedience principle to rewrite

13For Theorem 2, it is without loss of generality to focus on pure deviation rules.
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the above statements as

∃ D : A → Δ(A) s.t. Eγ [u (D (b), ω) − u (b, ω)] > 0.

which shows that there exists a D that dominates γ, and hence γ is dominated on average.

�

An equivalent way of thinking about Theorem 2 is this: a distribution γ can be rationalized if,

for all deviation rules D : A → Δ(A),∑︁
a,ω

[u (a, ω) − u (D (a) , ω)] γ (a, ω) > 0.14

Now, fix p to be the marginal of γ on Ω, S = A, and σ = I dA. Then, noting that γ (a, ω) =

π (a|ω) p (ω), the above inequality gives us a unique obedient triplet that rationalizes γ.

The result can therefore be seen as a counterpart to obedience constraints in information de-

sign (see surveys by Bergemann and Morris [2019] and Kamenica [2019]). In the lexicon of that

literature, all distributions γ ∈ Δ(A × Ω) that satisfy the above inequality for all deviation rules

can be supported as a “Bayes Correlated Equilibrium” of our decision problem.15

Theorem 2 also sheds light on how to find information structures that rationalize particular

action sequences. An action sequence a can be rationalized if there exists a distribution γ that can

be rationalized and puts positive probability on a. Any such distribution can be interpreted directly

as an information structure that signals action recommendations. Since Theorem 2 characterizes

all distributions that can be rationalized, we need only to look at those that put positive probability

on a to find all obedient triples that rationalize a.

6.2 Distributions over actions

In some scenarios, observing the realized state of the worldmight be difficult or even impossible for

the analyst. For instance, the analyst may observe the investment decisions made by the population

of firms in Example 1, but may not observe whether the underlying market forces were good or

bad for them. In that case, we can ask whether a given distribution over action sequences can be

rationalized.

Since a triple (σ, π, p) defines a joint distribution γ ∈ Δ(A × Ω), we consider the set of such
joint distributions that is consistent with a given marginal γ ∈ Δ(A),

Γ(γ̄) =
{
γ ∈ Δ (A ×Ω) |

∑︁
ω

γ (a, ω) = γ̄ (a)
}
.

14It can be noted that the use of mixed deviation rules in this statement is redundant, if the set of inequalities hold
for all pure deviation rules D : A → A, the statement is still true.

15Just as the objective of the linear program in information design is to identify the set of binding obedience con-
straints, the objective of the above result is to identify the critical deviation rule.
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The definition of rationalizing a distribution of action sequences then corresponds to Definition

7, but where we allow any joint distribution with the given marginal γ.

Definition 9. A distribution γ̄ ∈ Δ(A) can be rationalized if there exists
(
σ, π, p

)
such that

1. σ ∈ argmax
σ̂

U
(
σ̂, π, p

)
, and

2. σ ◦ π ◦ p = γ̄.

To prove that γ cannot be rationalized, we must show that it is impossible to find any γ ∈ Γ(γ)
that can be rationalized in the sense of Definition 7. One way to do this is to find a deviation

rule that works simultaneously for all distributions in Γ(γ). This idea leads us to the concept of

intermediate domination.

Definition 10. A deviation rule D : A → Δ (A) dominates a distribution γ ∈ Δ(A) if∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω)] γ (a) > 0.

We say that γ is intermediately dominated if there exists a deviation rule that dominates it.

So we say that D dominates γ if the average improvement is positive, even when we choose the

worst possible state for each action sequence. The requirement of Definition 10 is thus intermediate

to the notions of true dominance, which looks at the worst improvement across states and actions,

and average dominance, which looks at the average improvement across states and actions.

If γ is intermediately dominated, the deviation rule that dominates γ demonstrates that any

γ ∈ Γ(γ) cannot be rationalized, and thus γ cannot be rationalized. As the reader might suspect

at this point, the converse also holds.

Theorem 3. A distribution γ ∈ Δ (A) cannot be rationalized if and only if it is intermediately domi-
nated.

Proof. As in the case of Theorem 1, one direction is easy. Suppose D dominates γ in the sense

of Definition 10, and by contradiction γ can be rationalized by some triplet
(
σ, π, p

)
. Then, the

alternative strategy σ̂ = D ◦σ gives the agent a strictly higher expected payoff when facing
(
π, p

)
.

Thus, it must be that γ cannot be rationalized.

Conversely, suppose that γ cannot be rationalized. Then, by Theorem 2, for every γ ∈
Δ (A ×Ω) with marginal γA = γ, there exists a deviation rule D such that∑︁

a,ω
[u (D (a) , ω) − u (a, ω)] γ (a, ω) > 0.

By Lemma 3, we can invert the order of quantifiers: there exists a deviation rule D such that for

all γ ∈ Δ (A ×Ω) with marginal γA = γ, we have:∑︁
a,ω

[u (D (a) , ω) − u (a, ω)] γ (ω |a) γ (a) > 0.
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Now, we are free to choose γ (ω |a) arbitrarily given a, which means that the inequality above must

hold for every γ (ω |a). This happens precisely when∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω)] γ (a) > 0.

�

Noting the system of inequalities that define the three notions of dominance can help under-

stand the intermediate nature of this result. Condition (b) in Definition 5 implies that for true

dominance, we need

min
b∈A

min
ω∈Ω

[
u
(
D

(
b
)
, ω

)
− u

(
b, ω

) ]
> 0

with a strict inequality for b = a, the particular action sequence being dominated. Intermediate

dominance (Definition 10) modifies this identity by taking the average over the distribution of

action sequences using the marginal γ̄:∑︁
b

min
ω

[
u
(
D

(
b
)
, ω

)
− u

(
b, ω

) ]
γ
(
b
)
> 0.

And, finally, average dominance (Definition 8) takes average over both action sequences and states

using the knowledge of the joint distribution γ:∑︁
b,ω

[
u
(
D

(
b
)
, ω

)
− u

(
b, ω

) ]
γ
(
b, ω

)
> 0.

In Section 7, we illustrate how Theorem 3 can be applied to pin down the maximal probability

with which an apparently dominated action sequence can be taken in the context of Examples 1

and 2. Before that we provide a brief comparative discussion of the three main results in terms of

the empirical contents of the respective Bayesian models they characterize.

6.3 Discussion

The richer predictions afforded by Theorem 2 and 3 come at the backdrop of several assumptions

on the environment that we now discuss.

Theorems 2 and 3 assumed that the analyst could observe a whole distribution of action se-

quences. What does that mean? A natural interpretation is that we have data on choices for a large

population of agents and the analyst observes the empirical distribution of choices for that popu-

lation. Under that interpretation, we also assumed that all agents in that population have the same

utility function, prior, and information structure. Moreover, we also need to assume that the sig-

nals seen by each agent are independent. It is only then we can conclude by a standard law of large

numbers argument that the empirical distribution should be close to the theoretical distribution

generated by the triple (σ, π, p). No such assumptions are required for Theorem 1.
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The independence assumption, in particular, is quite important. Consider what would be the

effect of relaxing it in Example 1. If we allow any correlation, we could have that every agent

faces a problem with the same relevant state of the world (G or B) and sees the same public signal.

It is perfectly plausible that the public signal be first good and then bad, leading all agents in the

population to choose the action sequence (invest, pull back). But then we could observe 100%

of the population choose an apparently dominated action sequence, which would seem to violate

Theorem 3. Without independence, all we can say is that the observed distribution must have its

support on action sequences that are not truly dominated, highlighting the relevance of Theorem

1 even when population data is available.

Hence, which theorem is most appropriate is not exclusively a function of the kind of data

available, but also of the assumptions that the analyst is willing to make on the data generating

process. In that sense, we let the analyst be the judge of which result is the most useful for the

question and data at hand.

6.4 Workings of Theorem 3 through examples

If we have data on a population of agents and see many of them taking an apparently dominated

action sequence, we may question whether this behavior is consistent with our Bayesian model.

The machinery developed in Section 6 can be used to answer this question. We ask what is the max-

imum probability of taking that action sequence that can still be rationalized (since an apparently

dominated action sequence cannot be chosen with probability one). If the fraction of agents tak-

ing this apparently dominated action sequence exceeds the upper bound, then the Bayesian model,

under the appropriate assumptions discussed in Section 6.3, is rejected.16

We do this in two steps. Suppose the highest probability is γ ∈ [0, 1].17 First, a lower bound

is obtained for γ by constructing a specific information structure, and then an upper bound is

obtained by devising a specific deviation rule. An educated guess for each side makes these bounds

coincide, leading to a precise value for γ. We operationalize these ideas in the context of the two

examples from the introduction.

Revisiting Example 1. We know that all three action sequences can be rationalized. Since (in-
vest, pull back) is apparently dominated, it cannot be rationalized with probability 1, rather with

some probability γ ∈ (0, 1). For the lower bound on γ, suppose we start with a uniform prior:

both good and bad states are equally likely. Consider a sequential information structure that gives

no information in the first period, and in the second period gives information according to the

following conditional probability system:
16This is also related to a strand in the behavioral economics literature that studies seemingly dominated dynamic

choices, eg. DellaVigna and Malmendier [2006] and Grubb and Osborne [2015]. What fractions of such choices in the
data set would surely reject the Bayesian model? See Section 8 for more details.

17Note that γ = 0 for a truly dominated action sequence (Theorem 1), and it is easy to see that it equals 1 for an action
sequence that is not apparently dominated. The interesting case, that is γ ∈ (0, 1), arises when the action sequence is
apparently dominated but not truly dominated.
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g b

good α 1 − α
bad 0 1

When the state is good, signal g is generated with probability α and signal b is generated with

probability 1 − α, and when the state is bad, signal b is generated for sure. Thus, conditional on

investing in the first period, the agent will choose to continue investing in the second period if the

signal is g . It can be checked by applying Bayes’ rule that the agent will pull back upon seeing

signal b if and only if α ≥ 2
3 .
18 So, assume α > 2

3 .

The agent’s expected payoff if he chooses to invest in the first period is given by:

1
2
· (−1) + 1

2
· [2α + (1 − α) (−1)] = 3

2
α − 1

Clearly, it is optimal to invest in the first period if α > 2
3 . Finally, the probability with which the

agent will choose (invest, pull back) under this information structure is

1
2
· 1 + 1

2
· (1 − α),

which, given the constraints on α, is maximized at α = 2
3 . Thus, the distribution generated over the

three action sequences
{
(not invest, ∅), (invest, pull back), (invest, invest)

}
with α = 2

3 is (0, γ̂, 1− γ̂)
where γ̂ = 2

3 . We can conclude that γ > 2
3 .

Next, we characterize the upper bound on γ using deviation rules. Without loss of generality,

consider a distribution of the form (0, γ̂, 1 − γ̂), and consider the following deviation rule:

not invest invest & pull back invest & invest

D not invest not invest not invest

The expression in Theorem 3 is given by:

γ̂ · 1 + (1 − γ̂) · (−2) > 0 that is 3γ̂ − 2 > 0.19

Thus, any γ̂ > 2
3 is “dominated” by this deviation rule which means that γ ≤ γ̂ ≤ 2

3 .

Collectively, we can conclude that the highest probability with which the action sequence (in-
vest, pull back) can be rationalized in Example 1 is γ = 2

3 .

Revisiting Example 2. We are interested in the question, what is the maximum probability with

which wx can rationalized as a function of δ? Call this number γδ . As before, we first construct
18Note P(good|b) = 1−α

2−α . It is optimal to choose to pull back if 2 · P(good|b) + (−2) · P(bad|b) ≤ −1, which is the
case when α > 2

3 .
19It is clear from this expression why it is without loss of generality to consider a distribution of the form (0, γ̂, 1 −
γ̂). For any positive weight on (not invest, ∅), we can move the mass to the other two actions sequences, since the
deviation maps (not invest, ∅) to itself and we are evaluating the highest probability with which (invest, pull back) can
be rationalized.
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δ

γ

4
5

1
2

1

1

a lower bound using information structures and then an upper bound using deviation rules, and

choose wisely so that these coincide.

The calculations are a bit more involved for we want to report the probability as an arbitrary

function of δ. It is immediate from previous discussions that γδ = 0 for δ < 4
5 , since wx can only

be rationalized for δ > 4
5 . It is also clear that γδ < 1 for δ < 1, and it exactly equal to 1 for δ = 1.

In the appendix, we show that in fact:

γδ =

(
3 − 2
δ

)
· 1

(
δ >

4
5

)
,

where 1 is the indicator function. The adjoining figure plots this value of γδ . The construction

of the information structure and the deviation rules that delivers
(
3 − 2

δ

)
as the lower and upper

bounds respectively are provided in Section 9.4.

Since waiting is truly dominated for δ 6 4
5 , the maximum probability is constantly zero in[

0, 45
]
. For δ > 4

5 , the maximum probability is increasing—the more patient the agent, the easier

it is to rationalize waiting.

7 Applications and connections to the literature

We now present four applications and use these to connect the paper to varied literatures in eco-

nomic theory and behavioral economics. First, Corollary 3 shows that when the agent is more

risk averse, more action sequences can be rationalized. Second, we provide a model to unify, using

Theorem 3, the rejection of the standard Bayesian model across various studies of dynamic choice

in behavioral economics. Third, we argue how the characterization of empirical content through

Theorems 2 and 3 connects us to a burgeoning literature in dynamic information design. Fourth,

we show how deviations rules, through Theorems 1 and 3, can be used to partially identify prefer-

ence parameters without assumptions on beliefs or information. We end the sections with further

discussion of related work.

25

Electronic copy available at: https://ssrn.com/abstract=3332092



7.1 Impact of risk aversion

The set of action sequences that can be rationalized is inextricably connectedwith the agent’s utility

function. It may be possible to ask how the set of action sequences that can be rationalized changes

as the utility function of the agent is changed in a systematic way. Here, we show that the set of

actions that can be rationalized increases with risk aversion. Thus, if we can rule out an action

sequence for an agent with a utility function u, we can also rule out that action sequence for all

agents who have a utility function v which is less risk averse than u.
Recall that v is less risk averse than u if and only if there exists an increasing and convex function

f : R → R such that v = f ◦ u. Using this fact, Weinstein [2016] and Battigalli, Cerreia-Vioglio,

Maccheroni, and Marinacci [2016] show that the set of rationalizable strategies increases with risk

aversion. Using Theorem 1, the same logic can be applied here.

Corollary 3. Let v, u : A×Ω → R be two utility functions, with v less risk averse than u. If a cannot
be rationalized for u, then it cannot be rationalized for v.

Proof. Let f be an increasing convex function such that v = f ◦ u. By Theorem 1, a cannot be

rationalized for u if and only if there exists a deviation rule D : A → Δ(A) such that u (D (b), ω) >
u (b, ω) for all b and ω, with a strict inequality for b = a. The same deviation rule will work for

v , since, by Jensen’s inequality,

v
(
D

(
b
)
, ω

)
=

∑︁
c∈A

f ◦ u (c, ω)D (c|b)

> f

[∑︁
c∈A

u (c, ω)D (c|b)
]

= f
(
u
(
D (b), ω

) )
> f

(
u
(
b, ω

) )
= v

(
b, ω

)
The first inequality follows from Jensen’s inequality and the second follows from the definition of

true dominance and is strict for b = a. Hence a is truly dominated for v . �

The corollary is stated purely in terms of what actions can be rationalized. But the proof is

in terms of deviation rules, and we are not aware of any proof that would work directly in the

information space, hence the relevance of Theorem 1 in proving the result.

7.2 Rejecting the ‘standard’ model in behavioral economics

Why do people sign a long-term contract of gym membership, when their low usage shows they

would have saved money by choosing a pay per use contract (DellaVigna and Malmendier [2006])?

Why do customers sign up for a low-minutes phone contract and then end up using more minutes

that costs them much more than if they had paid for these minutes upfront (Grubb [2009])?
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Such action sequences lie in the gap between apparent and true dominance. They involve clear

regret, but individually they can be rationalized. However, with rich enough data, there is an

upper bound on what fraction of the population can choose such apparently dominated action

sequences. In this section, we show how Theorem 3 can be used to check whether some usage data

is inconsistent with the standard Bayesian model.

The decision problem can be described as follows: The agent (i.e., the consumer) starts by

picking a contract that gives an option of using a service now until some future specified date, eg.

a gym membership, a cell phone plan etc. In a typical situation, the agent may choose a contract

with a higher advanced fee for a lower marginal cost of use later. After the contract is signed, the

agent is “locked in”, eg. he cannot simply renege or may have to pay a fine to do so.

Formally, let a0 correspond to a choice of contract, and a1, . . . , aT represent the usage in each

period. The agent’s utility is quasilinear in money spent, so it can be written down as

u (a0, a1, . . . , aT , ω) = v (a1, . . . , aT , ω) −m (a0, a1, . . . , aT ) (3)

where v represents the agent’s direct benefit from using the service, and m is the value of money.

Notice that the amount of money spent depends on the choice of a0, but the direct benefit from
using the service does not, hence v is independent of a0. The state ω here captures how much the

agent needs or values using the service after the contract is signed.20 The monetary part of the

contract, m, could specify an upfront fee that allows free usage afterwards or simply a pay-per-use

scheme. Let A0 be the set of contract choices and A be the set of usage sequences that follow.

The framework of Equation (3) captures both the gym membership study in DellaVigna and

Malmendier [2006] and the phone contract study in Grubb [2009]. DellaVigna and Malmendier

[2006] argues conceptually about the underlying model that is to be rejected, but does not specify

any information process that governs the learning of the state by the agent. Grubb [2009] consid-

ers the simple information structure where the agent is endowed initially with a prior and then

perfectly learns the state of the world after signing the contract and before usage.

Our model departs from theirs by allowing a general learning environment and non-separable

time preferences, while explicitly assuming quasi-linearity in money. These papers argue that the

observed distribution of choices in their data cannot be reconciled with the standard model. The

formal claim is that a distribution over actions sequences (a0, a) = (a0, a1, . . . , aT ) cannot be ratio-
nalized in the sense of Definition 9. Thus, we apply Theorem 3 to the data set when preferences

are represented by Equation (3).

In fact, these papers start by invoking a more limited question: can the choice of contracts

a0 be rationalized, keeping fixed the usage behavior, a = a1, . . . , aT ? A deviation rule of partic-

ular interest then is one that changes a0 to a different a ′0, but keeps the subsequent actions a the

same—changing the contract without changing usage. If we have data of usage of a population—a

20Note that this general definition of ω allows us, for instance, to define ω =
(
ω1, . . . , ωT

)
and to let each ωt affect

only the agent’s utility for at , so v
(
a1, . . . , aT , ω

)
= v1 (a1, ω1) + v2 (a2, ω2) + . . . + vT (aT , ωT ).
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distribution γ̄ of a—we can find conditions under which the model is rejected.

Corollary 4. Suppose the agent chooses a contract a0 and then uses the service through actions a =

a1, . . . , aT . Preferences are given by Equation (3). Then, a distribution over usage γ̄ ∈ Δ(A) cannot be
rationalized if there exists another contract choice a ′0 such that∑︁

a1,...,aT

[
m (a0, a1, . . . , aT ) −m

(
a ′0, a1, . . . , aT

) ]
γ (a0, a1, . . . , aT ) > 0.

Proof. From Theorem 3, γ̄ cannot be rationalized if

∑︁
a1,...,aT

min
ω

{
u (a1, . . . , aT , ω) −m

(
a ′0, a1, . . . , aT

)
− [u (a1, . . . , aT , ω) −m (a0, a1, . . . , aT )]

}
γ (a0, a1, . . . , aT ) > 0

�

So, given the distribution γ̄ of usage observed in the data, if the contract a0 is dominated in

the sense of Corollary 4, the behavior of some agents choosing a0 must be violating the standard

model. DellaVigna and Malmendier [2006] tacitly use this result to argue that pay-per-use contract

dominates the pay monthly contract, since the usage a, which in their case is simply the frequency

of visits, is not high enough to justify the monthly contract:

“If this consumer switched to the pay-per-visit contract without changing state-contingent

attendance, she would have higher utility.”

Grubb [2009] too uses an exact counterpart of Corollary 4 to argue that consumers may not have

rational expectations:

“...the fact that on average plan 1 customers could have savedmoney had they all chosen

plan 0, provides evidence that consumers have biased beliefs ex ante.”

Once established that the standard model cannot explain the data, it is interesting to look for

a model that could. As alluded in the quote by Grubb above, one possible explanation is that

the agent has biased beliefs—they think that the signal generating process is different from the real

one. Another explanation, advanced by DellaVigna and Malmendier [2006], is that the agents

are time inconsistent, for example they may have hyperbolic preferences (see Laibson [1997] and

O’Donoghue and Rabin [1999]). Interestingly, in a slightly different context of task completion,

Heidhues and Strack [2021] show that choice probabilities can be insufficient to separate a time-

consistent from a present-biased agent.

Equation (3) and Corollary 4 clarify the key assumptions that go into the rejection of the

standard model in a variety of studies of dynamic decision problems: separability in money and

consumption, impact of contract choice on money but not consumption and quasi-linearity in
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money. In fact, most studies assume further separability of utility across time, which is not required

by Equation (3).21

The deviation arguments in DellaVigna and Malmendier [2006] and Grubb [2009] were per-

suasive partly because of the simplicity of the deviations used, so that a full characterization of

empirical content was not necessary. We hope that, by formalizing this deviation method more

generally, new applications may arise in settings where the necessary deviations may not be as

simple.

7.3 Dynamic information design

Information design asks whether some desirable behavior can be induced with a careful choice of

information structure, starting from a fixed prior belief on states. The results in this paper allow

us to ask a more permissive version of this question: what are the set of feasible action sequences

(Theorem 1) or distribution over action sequences (Theorems 2 and 3) for any possible prior. This

can be interpreted as a situation in which the designer controls not only the information structure,

but also the distribution over states.

To illustrate the ideas here, we will use a two-period version of the “moving the goalposts”

model in Ely and Szydlowski [2020].

Example 3. Amanager wants the employee to put in effort in both periods of a two-stage project.

Each round of effort costs c to the manager. If the task is easy, one round of effort is sufficient for

the desired output of R for the agent, and if the task is hard then two rounds of effort are required.

Payoffs and presented in Figure below.

no effort & effort &

effort no effort effort

hard 0 −c R − 2c

easy 0 R − c R − 2c R − 2c
R − 2c

effort

−c
R − 2c

no effort

effort
0

0

no effort

Assume 0 < c < R < 2c . Then, the structure here is analogous to Example 1—it is a stopping

problem, where one of the actions from continuing in the first period is apparently dominated by

the choice to stop in the first period. The tools in this paper allow us to characterize the empirical

content of the model—in particular they tell us the highest probability with which (effort, effort)

can be rationalized.

The highest probability that the action sequence (effort, effort) can be rationalized is R−c
c . This

can be calculated similarly to how we found the highest possible probability for (invest, pull back)
in Example 1 (see Section 6.4). This entails constructing a deviation rule which gives an upper

bound on the probability and a simple information structure that gives the lower bound, and these

21Note that these assumptions are in addition to the ones discussed in Section 6.3 on informational requirements on
the data generating process, so that Theorem 3 can be applied.
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coincide. As a corollary, we can rationalize any fraction of agents from 0 to R−c
c putting effort in

both periods, without knowing any more information about how they learnt whether the task is

easy or hard.

It seems only natural to ask for more: can deviation rules be similarly used to characterize

the feasible distributions for a fixed prior, i.e. what class of distributions γ̄p can be rationalized

as a function of the prior p? Since this requires developing a new result, we refer the reader to

our companion paper, de Oliveira and Lamba [2023]. There we present a result along the lines of

Theorem 3 that works for a fixed prior; the idea of deviation rules is central there too. Applied to

Example 3, this speaks directly to the model studied by Ely and Szydlowski [2020].

Dynamic information design is now a burgeoning area of study (see, for instance, Ely [2017],

Doval and Ely [2020], Orlov, Skrzypacz, and Zryumov [2020] and Basak and Zhou [2020]). This

of course builds on the static information design literature (Kamenica andGentzkow [2011], Berge-

mann and Morris [2016]). In a closely related paper, Makris and Renou [2022] extend Bergemann

andMorris [2016]’s definition of Bayes Correlated Equilibrium to a general dynamic environment.

Building on this paper, they also consider the restriction to the case of one player. For this, they

use deviation rules to define a notion of “sure dominance”, which is the analogue of our “true

dominance” for the problem of experimentation (when signals can depend on actions). Their du-

ality result is another indication that the approach used here can be applied in a variety of related

contexts.22

7.4 Partial identification of preferences

Suppose that the utility function of the agent depends on a parameter δ ∈ D, known to the agent

but unknown to the analyst. The set of action sequences which can be rationalized would then

depend on δ. Therefore, if the analyst observes a certain action sequence being taken, she can

rule out values of δ that would be inconsistent with that observation. In other words, while we

took the perspective of an analyst that knows the utility function and tries to infer what action

sequences can be rationalized, the same results could be used for the inverse question: given that a

sequence of actions was taken, what utility functions would be consistent with it?

Let A (δ) ⊂ A denote the set of action sequences that can be rationalized for a given value of δ,

and in case the analyst can observe a distribution over action sequences, let B (δ) ⊂ Δ(A) denote
the analogous set of distributions. Upon observing an action sequence a, the analyst would deduce

22The idea of inducing the choice of apparently dominated action sequences through dynamic information structures
finds special appeal in the context of engagement maximization (Hébert and Zhong [2022]) and attention capture (Koh
and Sanguanmoo [2022]) by platforms. Here the agents solve an optimal stopping problem of acquiring information by
spending time on a platform. In Hébert and Zhong [2022], the sender acquires excessive information and is no better
off at stopping than if he had acquired no information at all, and in Koh and Sanguanmoo [2022], when the agent stops
their surplus is at reservation value. It would be interesting to see if the tool kit of deviation rules can be applied to
these setting with explicit costs of information acquisition absent in our model.

30

Electronic copy available at: https://ssrn.com/abstract=3332092



that the true value of δ must lie in the set

D (a) = {δ |a ∈ A (δ)}

and, upon observing a distribution γ ∈ Δ(A) over action sequences, the analyst would deduce that

the true value of δ must lie in the set

Δ(γ) = {δ |γ ∈ B (δ)} .

It can be immediately noted that

D (a) ⊆ D(γ) ∀a ∈ Supp(γ),

where Supp(γ) denotes the support of the distribution γ.
We can use deviation rules as a method of approaching the set of possible parameters, D (a) or

D(γ), as follows. Given a deviation rule D , define the set DD (a) of utility parameters for which

D does not dominate a, in the sense of Theorem 1. Similarly, define DD (γ) to be the set of utility

parameters for which D does not dominate a, in the sense of Theorem 3. These sets, DD (a) and
DD (γ), are typically much easier to characterize than A (δ) and B (δ) respectively. Moreover, the

following result precisely characterizes the extent of identification in our framework.

Corollary 5. D (a) ⊂ DD (a) for any deviation rule D, and D (a) = ⋂
D DD (a). Similarly, D (γ) ⊂

DD (γ) for any deviation rule D, and D (γ) = ⋂
D DD (γ).

Proof. D (a) ⊂ DD (a) by construction, and D (a) = ⋂
D DD (a) follows immediately from Theo-

rem 1. Similarly, D (γ) ⊂ DD (γ) by construction, and D (γ) = ⋂
D DD (γ) follows immediately

from Theorem 3. �

This method was already used in Example 2 when we showed that the multiplicative waiting

cost could not be greater than 4/5 upon observing that the agent chose to wait, that is D (wx) =[ 4
5, 1

]
, and we directly identified the set by constructing the “binding” deviation rule that rec-

ommends randomizing 50-50 in the first period instead of waiting. Similarly, building off on the

argument above in Section 6.4, upon observing a distribution γ that puts weight γw > 0 on wx
(or wy ), the analyst can conclude that D (γw ) =

[
max{ 2

3−γw ,
4
5 }, 1

]
. So, for 0 < γw 6 1/2, we can

only conclude that δ > 4
5 . However, when γ > 1/2, this bound tells us that we must have δ > 2

3−γw .

Such partial identification exercises have been applied in static settings, using the notion of

Bayes Correlated Equilibrium. Magnolfi and Roncoroni [2023] partially identify a parameter that

measures the effect of competition in an entry game. Syrgkanis, Tamer, and Ziani [2021] estimate

the distribution of valuations in an auction. These estimates have the conceptual advantage of

making very few assumptions on the information structure, which is typically hard to ascertain in

practice. Our results show that such estimation exercises can potentially be extended to dynamic
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problems with little difficulty using the methods developed here.

7.5 Other literature

The most closely related papers to ours are the following: At the conceptual core, as pointed out in

Section 3, the idea of using duality to characterize the empirical content of the dynamic decision

problem builds on the static counterpart pioneered by Wald [1949] and Pearce [1984]. Further

in a static setting, Caplin and Martin [2015] provide a necessary condition for stochastic choices

to be rationalized by information in a Bayesian model. The condition, called no improving action
switches, states that no systematic reassignment of actions can lead to a higher expected utility. No

improving action switches is analogous to true dominance, with the difference that our deviation

rules include the adaptedness condition in order to respect the sequentiality of the problem. Also,

as noted, Makris and Renou [2022] extend the idea of Bayes Correlated Equilibrium to a dynamic

environment and then use their general results to show how the restriction to a dynamic decision

problem generates obedience constraints that can be re-written in the language of deviation rules.

Then in closely related recent work, a small theoretical literature that seeks to rationalize the

empirical content of dynamic decision problems: Taubinsky and Strack [2022] study the question

of identifying hyperbolic preference parameters from distributional choice data in a two-period

problem. It argues that the time-consistent model can generally not be rejected—the only data

that rejects it is the extreme case of complete preference reversal. On the other hand, Deb and

Renou [2021] characterizes the empirical content of a model with multiple agents and common

sequential learning. Even with limited data, it produces non-trivial predictions in applications for

discrimination and committee voting.

The tradition of empirically testing the Bayesian model goes at least as far back as Tversky

and Kahneman [1971], Kahneman and Tversky [1972], and Grether [1980]. These tests usually

involved carefully designed experiments that induced counter-intuitive predictions. In contrast,

our interest here is in understanding the predictions of the model using limited field data, with-

out any knowledge of the information that is available to agents. Relatedly, Shmaya and Yariv

[2016] explore the empirical implications of the Bayesian assumption in an experimentally moti-

vated setting, providing a benchmark "anything goes" result for rationalization in dynamic choice.

In contrast, we find that with richer settings but more limited data requirements, the sequential

decision model can indeed make predictions.

There is a long tradition in economics of recovering parameters from observed choices, most

notably in the revealed preference literature (see Chambers and Echenique [2016]). While most

of the literature focuses on identifying utility functions, we take them, or at least the family they

belong to, as given (though subject to the two subtleties mentioned in Section 2), and ask when can

choices be explained via information. Information is also modeled as a general dynamic stochastic

process in Chambers and Lambert [2021], and there too the agent takes a sequence of actions.

Their focus however is on finding the right utility function in order to elicit the overall information
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structure.

In the (axiomatic) decision theory literature, papers often seek to identify utilities and infor-

mation simultaneously (see, for example, Dillenberger, Lleras, Sadowski, and Takeoka [2014],

Piermont, Takeoka, and Teper [2016], and Lu [2016]). However, identifying this rich space of

parameters requires much richer data as well, such as all choices from all menus. Frick, Iijima, and

Strzalecki [2019] is an example that is close to our model. They study a dynamic random utility

model, with one possibility being that the agent learns about their utility over time.

The question of which action sequences can be rationalized can also be expressed in terms

of communication equilibria (see Myerson [1986] and Forges [1986], and more recently Sugaya

and Wolitzky [2018]).23 The reformulated question becomes: what action sequences can occur

with positive probability in a communication equilibrium of a single-player game? Under this

interpretation, our Obedience Principle (Lemma 2) is a particular case of the revelation principle

of Myerson and Forges (see Propositions 1, 2 and 3 in Sugaya and Wolitzky [2018]), though our

restricted context allows for amuch simpler proof. Myerson introduced the notion of codominated

actions, which also extends the notion of a dominated action in a static multiplayer game to amulti-

stage game. Although it seems reasonable to conjecture that the codomination procedure would

eliminate all truly dominated action sequences under generic payoffs, it only gives a sufficient

condition for true dominance in general—there may be actions which are not codominated, but

are never chosen with positive probability in any communication equilibrium.24 For example, in

Figure 3b, no actions are codominated, but the sequence of actions Lr is truly dominated.

Further, in the context of Myersonian mechanism design, Rahman [2010a,b] shows that Ro-

chet [1987]’s characterization of incentive compatibility can be simplified to a set of detectable

deviations and adapted to include both static multidimensional and dynamic problems. The idea

of deviations there and the constructive proof through a zero-sum game between the principal and

agents parallels Theorem 1 here.

8 Final remarks

This paper characterizes the empirical content of a standard Bayesian model for a general dynamic

decision problem. Theorems 1, 2 and 3 vary the data requirement for the analyst and produce

different implications for the Bayesian model, but they all rely on the same unifying feature: the

idea of deviation rule, invoked each time we define dominance.

Theorem 1 gives the most parsimonious test of the model, by asking when can an action se-

23Formally, in communication games, the mediator starts with no information, and only acquires information
through the incentivized reports of players. But this framework can easily be extended to one where the mediator
starts with information by adding to the game a dummy player who takes no actions, has constant payoff, but knows the
state of the world since the beginning of the game. All that this dummy player does is report the state to the mediator
at the beginning of the game. Alternatively, we can follow Makris and Renou [2022] who consider a mediator who
directly knows the state of the world.

24By generic, we mean that no two action sequences can give the same payoffs in the same state. This is a strong
restriction, violated by many applications of interest.
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quence be chosen by an optimizing agent. In contrast, Theorem 3 assumes that an entire distri-

bution over action sequences can be observed, whereas Theorem 2 assumes further that states can

also be observed. Put this way, it might seem that the results can be ranked, with Theorem 1 giving

the weakest predictions, Theorem 3 intermediary, and Theorem 2 the strongest. However, these

stronger predictions also come with stronger assumptions on the data generating process, e.g., that

the signals in the population are generated independently. Because of these accompanying assump-

tions, we see no obvious way to rank the theorems, leaving to the analyst the task of choosing the

appropriate result.

Finally, it is natural to ask how hard it is to search through the family of deviation rules. In

practice, the family of “relevant” deviation rules is drastically smaller than the set as we define

them. In related work, we show how to reduce the complexity of what deviation rules would

be relevant in establishing dominance. An example of a “redundant” deviation rule is one that

simultaneously recommends deviating from a to b and from b to a; these can be safely ignored.

Such considerations can drastically reduce the set of deviation rules that need to be checked. For

example, in context of Example 1, a total of twenty seven deviation rules are possible, but only

three of them are “relevant”.25

Even if the analyst cannot run through the entire family of deviation rules, a single deviation

rule can already lend empirical content to the dynamic decision problem. In contrast, constructing

an information structure can only show that some distribution is possible, but does not rule out

any distribution. As we showed in the examples, instead of working through all possible deviation

rules or all possible information structures, our results help completely characterize the empirical

content of the model through a few deviation rules and one information structure. Systemati-

cally identifying the binding deviation rules and information structures is a promising question

for future work.

9 Appendix

9.1 Proof of Lemma 3

Statement: Let X ⊂ Rm be an evenly convex polyhedron and Y ⊂ Rn be a polytope (both non-

empty). If f : Rm ×Rn → R is affine in each variable, then the following statements are equivalent:

1. For every x ∈ X , there exists a y ∈ Y such that f
(
x, y

)
> 0;

2. There exists a y ∈ Y such that, for every x ∈ X , f
(
x, y

)
> 0.

Proof. (2) ⇒ (1) is obvious, since we can just pick, for every x , the same y that is given in (2).
We now prove (1) ⇒ (2). Since Y is a polytope, it is the convex hull of its extreme points:

Y = conv
(
y1, . . . , y J

)
. Each j determines an affine function f

(
x, y j

)
. Thus there is a J × n matrix

G and a J × 1 vector g such that we can write f
(
x, y j

)
= G j x − g j for every j .

25A draft of this note is available upon request.
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Now, since X is an evenly convex polyhedron, it is defined by a finite number of linear in-

equalities. Write those as Ax 6 a and Bx < b . We can thus rewrite statement (1) as

1. There is no solution to the system of inequalities

Ax 6 a Bx < b Gx 6 g .

By Motzkin’s Transposition Principle (Motzkin [1936]), this system does not have a solution if

and only if there exist vectors α, β, γ > 0 satisfying at least one of the two systems:

(a) αA + βB + γG = 0 and αa + βb + γ g < 0

(b) αA + βB + γG = 0 and αa + βb + γ g 6 0 and β ≠ 0.

Notice that if γ = 0, any of these two systems gives us a contradiction to the system of inequalities

Ax 6 a and Bx < b . Since we assume that X is non-empty, we must have γ ≠ 0. We may

normalize γ and the other variables so that
∑

j γ j = 1. Now take any x ∈ X . From system (a), we

get

γGx = −αAx − βBx > −αa − βb > γ g

while from system (b) we get

γGx = −αAx − βBx > −αa − βb > γ g .

Either way, we have that γ
(
Gx − g

)
> 0 for every x ∈ X . This finishes the proof, as can be seen

by writing out the expression in its original terms: Letting y =
∑

j γ jy j , we have

f
(
x, y

)
=
∑︁
j
γ j

(
G j x − g j

)
= γ

(
Gx − g

)
> 0

for any x ∈ X . �

9.2 Completing the proof of Theorem 1

There are two pieces in the proof of Theorem 1, that are missing in the main text in Section 5.3,

which we complete here. The first is the following claim that completes the “only if” direction of

the proof, and the second fits the final step that flips the order of quantifiers to the Generalized

Separation Lemma, that is, Lemma 3.

Claim 1. Fix (π, p). If a is truly dominated by D and strategy σ is such that σ ◦ π ◦ p (a) > 0, then
the strategy σ̃ = D ◦ σ provides a strictly higher expected payoff.
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Proof. We show that the agent strictly benefits from switching from the strategy σ to the strategy

σ̃:

U
(
σ, π, p

)
=

∑︁
b∈A\{a}

∑︁
ω∈Ω

u
(
b, ω

)
σ ◦ π

(
b|ω

)
p (ω)

+
∑︁
ω∈Ω

u (a, ω) σ ◦ π (a|ω) p (ω)

<
∑︁

b∈A\{a}

∑︁
ω∈Ω

u
(
D

(
b
)
, ω

)
σ ◦ π

(
b|ω

)
p (ω)

+
∑︁
ω∈Ω

u (D (a) , ω) σ ◦ π (a|ω) p (ω)

=
∑︁
b∈A

∑︁
ω∈Ω

u
(
D

(
b
)
, ω

)
σ ◦ π

(
b|ω

)
p (ω)

=
∑︁
b∈A

∑︁
ω∈Ω

u
(
b, ω

)
D ◦ σ ◦ π

(
b|ω

)
p (ω)

=
∑︁
b∈A

∑︁
ω∈Ω

u
(
b, ω

)
σ̃ ◦ π

(
b|ω

)
p (ω)

= U
(
σ̃, π, p

)
Note that weak part inequality above follows from part 2 of Definition 5 (i.e. true dominance)

and the strictness of it follows from part 1 of the definition. �

Claim 2. Let X = {γ ∈ Δ(A ×Ω) s.t. γ (a) > 0}, Y =
{
D : A → Δ(A) s.t. D is adapted

}
, and define

f : X ×Y → R as f (γ,D) = Eγ [u (D (b), ω) − u (b, ω)]. Then,

1. X is an evenly convex polyhedron;

2. Y is a polytope; and

3. f is an affine function in γ and D.

Proof. 1. This follows from the definition of evenly convex polyhedron, since X is defined by

a finite number of inequalities, namely

(a) 0 6 γ (a, ω) 6 1;

(b)
∑

a,ω γ (a, ω) = 1; and

(c)
∑
ω γ (a, ω) > 0.

2. Here we consider Y as a subset of RA×A. Note that Y is defined by a finite number of

inequalities, namely

(a) 0 6 D (b|a) 6 1 for all a,b ∈ A;

(b)
∑

b∈A D (b|a) = 1 for all a ∈ A; and
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(c) The adaptedness restrictions, namely

∑︁
bt+1,...,bT

D (b1, . . . , bt , bt+1, . . . bT |a1, . . . , at , at+1, . . . , aT ) =∑︁
bt+1,...,bT

D (b1, . . . , bt , bt+1, . . . bT |a1, . . . , at , ct+1, . . . , cT )

for all a1, . . . aT , b1, . . . bt , and ct+1, . . . , cT . HenceY is a polyhedron. It is also bounded,

as can be seen from the inequalities in (a). Therefore, by Theorem 1.1 in Ziegler [2012],

Y is a polytope.

3. This follows immediately if we expand the definition of f :

f (γ,D) =
∑︁
a,b,ω

[u (a, ω) − u (b, ω)]D (a|b)γ (b, ω).

�

9.3 One deviation to rule them all

Proof of Proposition 2. Let A denote the set of truly dominated action sequences. For each a ∈
A, pick a deviation rule that dominates a, and let D be a strict convex combination of all those

deviation rules. Then it is straightforward to note that D simultaneously dominates all a ∈ Σ.

For each a ∉ A, take an obedient triple
(
I dA, πa, pa

)
that rationalizes it. We can combine

the prior and information structure into a single joint distribution γa ∈ Δ (A ×Ω) by defining

γa
(
b, ω

)
= πa

(
b|ω

)
pa (ω). Using this notation, the statement that

(
I dA, πa, pa

)
rationalizes a can

be translated to the following two conditions:

1. For all D : A → Δ (A), we have∑︁
b,ω

[
u
(
b, ω

)
− u

(
D

(
b
)
, ω

) ]
γa

(
b, ω

)
> 0

2.
∑
ω γa (a, ω) > 0

Now, let γ =
∑

a∉A µaγa be a strict convex combination of all the γa, i.e. µa > 0 and
∑

a µa = 1.

Then it is still true that ∑︁
b,ω

[
u
(
b, ω

)
− u

(
D

(
b
)
, ω

) ]
γ
(
b, ω

)
> 0

for every deviation rule D . Moreover,
∑
ω γ (a, ω) > 0 for every a ∉ A. This means that

γrationalizes all a ∉ A simultaneously. That is, defining π
(
b|ω

)
= γ

(
b|ω

)
and p (ω) = ∑

b γ
(
b, ω

)
,

we have that
(
I dA, π, p

)
rationalizes all a ∉ A simultaneously.

�
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9.4 Solving for the highest probability of wx in Example 2

As before, we will do this in two steps: construct a lower bound through information structures

and an upper bound through deviation rules. We then show these bounds coincide, so the charac-

terization is complete.

For a lower bound, start with a uniform prior, and consider a sequential information structure

that gives no information in the first period, and in the second period it gives information according

to the following conditional probability system:

a b

X 1 0

Y α 1 − α

So when the agent sees signal b , she’s sure that the state is Y ; when she sees signal a, she puts
some probability greater than 1

2 on the state being X (assuming α > 0). Her optimal strategy is

then to choose x after a signal of a and to choose y after a signal of b . Her expected payoff from

that strategy is
1
2
5δ + 1

2
(α3δ + (1 − α) 5δ) = 5δ − αδ.

For waiting to be optimal in the first period, we must have that 5δ − αδ > 4, giving us the highest

possible value of α to be α∗ = 5 − 4
δ . Thus, the probability that the agent chooses wx under this

information structure is the same as the probability that it results in a signal of a, namely

1
2
+ 1
2
α∗ = 3 − 2

δ
.

To show that this is precisely themaximumprobability thatwx can be chosen, we use Theorem
3. Consider the following two deviation rules: Dx , which takes w to x and Dy , which takes w to

y. Now, define Dλ = λDx + (1 − λ) Dy , and write the gains from deviating in each state:

deviation from wx u (D (wx) ,X ) − u (wx,X ) u (D (wx) ,Y ) − u (wx,Y )

Dx 5 − 5δ 3 − 3δ

Dy 3 − 5δ 5 − 3δ

Dλ λ (5 − 5δ) + (1 − λ) (3 − 5δ) λ (3 − 3δ) + (1 − λ) (5 − 3δ)

deviation from wy u
(
D

(
wy

)
,X

)
− u

(
wy,X

)
u
(
D

(
wy

)
,Y

)
− u

(
wy,Y

)
Dx 5 − 3δ 3 − 5δ

Dy 3 − 3δ 5 − 5δ

Dλ λ (5 − 3δ) + (1 − λ) (3 − 3δ) λ (3 − 5δ) + (1 − λ) (5 − 5δ)

We would like to pick λ so that the deviation is quite favorable when the agent is choosing

wx , even in the worst-case state. So we choose λ = 1+δ
2 so that the payoffs under wx are equated.

Under that deviation rule, the expected worst-case benefit of deviating is

[4 − 4δ] γ (wx) + [4 − 6δ] γ
(
wy

)
38

Electronic copy available at: https://ssrn.com/abstract=3332092



which is positive precisely when

γ (wx) >
(
3 − 2
δ

) (
γ (wx) + γ

(
wy

) )
.

In particular, if γ (wx) > 3 − 2
δ , the agent would benefit from this deviation.
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