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Abstract

This paper studies a general dynamic information design problem and shows how the
pap g y gn p
empirical content therein can be completely characterized using the instrument of deviation

rules.

1 Introduction

There is an underlying state of the world distributed according to a fixed prior. An agent observes
a signal correlated with this state, takes an action, observes another signal, and takes another
action until some finite terminal period. The payoff is realized at the end as a function of the
actions taken and the state of the world, which can be non-separable in actions. The problem is

described in Figure 1.
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Figure 1: The timeline of signals and actions

The main question we ask is: What distributions over action sequences are feasible, given
that the agent is assumed to be Bayesian and expected utility maximizer? Moreover, if we provide
agency to the sender of the information through a specific objective function which is different

than the agent, what is the optimal dynamic information structure for the sender?
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This may be christened a dynamic information design problem with a single agent. Concep-
tually, this class of problems explores how information can be used as an instrument to induce
rational agents to take actions over time that would be strictly suboptimal if they were exposed
only to a static information structure, either at the outset or even at some fixed time in the future.
Empirically, they can help characterize the set of distributions observable amongst a population
of agents making similar choices over time, without imposing any parametric assumption on the
information they are observing. A formal way to describe the empirical content of the Bayesian
problem is to identify the restrictions imposed by the joint hypothesis of Bayesian rationality
and the specific payoff function #, but without any hypothesis on the information structure.

If T = 1, this setup is exactly the Bayesian persuasion problem studied in Kamenica and
Gentzkow [2011] or the single-agent version of the information design problem studied in Berge-
mann and Morris [2016]. Relatedly, Caplin and Martin [2015] put the framework to understand-
ing the empirical content of the static Bayesian decision problem—what joint distributions over
actions and states are consistent with a particular information structure; which is extended in
Caplin and Dean [2015] to account for Shannon costs of information acquisition.

When the prior is not fixed and is also included as a flexible seed of the arbitrary sequential
information structure, de Oliveira and Lamba [2025] characterized the empirical content of the
problem for 7' > 1: What class of joint distributions over actions sequences and states of the
world can be rationalized for a fixed dynamic decision problem when the analyst does not know
the prior or the dynamically arriving signals? It also noted that in many applications at hand,
the analyst may not have access to information over realized states of the world, and only be
able to record the observed action sequences. To tackle such scenarios, it developed a result for
rationalizing the distribution only over action sequences, that is, marginal over actions of the
aforementioned joint distribution.

The main contribution of this paper is to further restrict the prior in this analysis. So now the
mathematical statement of the problem is to find a marginal distribution over action sequences
that, along with the fixed prior, completes a joint distribution that could have been generated by
a Bayesian agent that maximizes expected utility. In doing that, it relates to a number of recent
studies in both static and dynamic information design.

Analogous questions have been raised in Rehbeck [2023] and Doval et al. [2024], for the
case of T = 1. These papers also motivate their studies by appealing to the inability of the
outside analyst to infer data on realized states, so the analyst must restrict himself to rationalizing

distribution over actions. They present distinct duality results, and mapping them to ours for



the case of 7' = 1 remains an interesting open question.

In addition, a number of recent papers study the rationalization of optimal stopping times in
dynamic models of persuasion; see, for example, Ely and Szydlowski [2020], Hébert and Zhong
[2025], Koh and Sanguanmoo [2024], and Saeedi et al. [2025]. These studies, in various contexts
and to varying levels of generality, examine the extent to which an agent can be made to wait or
take consecutive actions by the principle when their preferences are misaligned.

The novelty we bring to this exciting and burgeoning literature is to evaluate an otherwise
complicated set of dynamic obedience constraints through the compact tool of deviation rules.
To pin down the set of feasible action sequences that can be taken by a rational Bayesian agent,

we can proceed in two ways:

1. Guess a binding deviation rule that provides an upper bound on the set of distributions
that can be rationalized, and then guess an information structure that achieves that bound.
This avoids the cumbersome task of traversing the entire universe of information struc-

tures to establish either feasibility or optimality.

2. More systematically, the problem of using deviation rules can be set up as a tractable linear

program, and so the binding deviation rule can be computationally determined.

This methodology of studying dynamic information design through deviation rules helps
reduce it to a static problem and unify various other models that solve these problems exclusively
in the space of information structures. As the reader would notice, there are few assumptions
imposed on the dynamic decision problem here; in particular, preferences are allowed to be

arbitrary, non-separable over time.

2 Model

2.1 Notation

A stochastic map from X to a finite set Y is a function @ : X — A(Y'), where A(Y') is the set of
probability distributions over Y. We represent the probability assigned to y at the point x by

a(y]x). The composition of two stochastic maps @ : X — A(Y) and B : Y — A(Z) is given by

Boalzlx)= ) Bzly)a(ylx).

yeYy



We can think of a lottery as a stochastic mapping whose domain is a singleton. Therefore, given

a€A(Y)and B:Y — A(Z), we write

Boalz)= Y Blzlya(y)
yeY
to be the probability with which z is chosen by 8 o a.
For a real-valued function # : ¥ — R and for a lottery @ € A(Y'), we denote by #(a) =
Y. a(y)u(y) the expected value of #(.) under the distribution e.
yey

Throughout the text, we consider a finite number of time periods ¢ = 1,...,7. For a

collection of sets (X t)szl’ we will use the following notation

with elements x* € X' and x € X. Finally, a stochastic map @ : X — A(Y) is said to be
adapted if the marginal probability of the first ¢ terms of y depends only on the first ¢ terms of

x; formally, it is adapted if the function

Z (V1 VerVetls- - VT o X Xt -2, XT)

Yi+ls-)T

1S constant in X 41, ..., XT.

2.2 Primitives

The basic model on which the information design problem is layered is based on de Oliveira
and Lamba [2025] and is as follows: In each time period ¢, the agent chooses an action 4, from a
finite set A,. Payofls are determined after period T by a utility function #(a, w), which depends
on the entire action sequence a = (ay,...,ar) € A and a potentially unknown state of the world
w drawn from a finite set Q. There are no other restrictions on the utility function.

There is a fixed prior p € A(Q). Thence the agent is informed about the underlying state
of the world over time through a sequence of signals. The timeline of the dynamic decision
problem is expressed in Figure 1. Every period, before taking an action, the agent observes a
signal that is (potentially) correlated with the state of the world and with the signals she has
observed in the past. Formally, the sequence of signals is generated by a sequential information

structure:



Definition 1. A sequential information structure is a sequence of finite sets of signals (S,)I_,

and a stochastic mapping w : Q — A (S).!

The agent’s strategy maps each sequence of signals into a lottery over actions every period,
with the restriction that the agent cannot base the choice of an action on signals that have not

yet been revealed, which we call adaptedness.
Definition 2. A strategy for the agent is an adapted stochastic mapping o : S — A (A).?

Given the sequential information structure 7 and agent’s strategy o, the probability that
the agent takes a given sequence of actions in each state of the world w is given by o o 7 (a|w).

Finally, given a prior p € A(Q), she can evaluate her expected payoft:

U(o,n,p) = Zp(w) Zo- or (alw) #(a,w).

we acA

The agent’s problem then is to choose an optimal o given 7 and p.

2.3 Feasibility

A key first step in any information design problem is to define the notion of feasibility. In
the context of our model this translates to which action sequences and signals can be jointly
rationalized by an agent who is best responding to the observed information. The notion of

feasibility will thus be described thorough a joint distribution over actions and signals.
Definition 3. A distribution y € A(A X Q) is said to be feasible if there exists (o, 1) such that
1. Y y(aw)=pw)VY,weQ,
acA
2. o € argmax U (6,7, p), and
3. y(aw)=corn(alw) -p(w)Vae A, weQ

Thus a joint distribution 1 is feasible if its marginal over the states of the world is equal to
the prior, and there exists a sequential information structure such that, in best responding to

it, the agent’s optimal strategy generates y. The empirical content of the dynamic information

I\We can equivalently define the sequential information structure period-by-period as follows. Let 7 = (”t)tT:1 be
a family of stochastic mappings where 711 : Q — A(S7), and 71, : QxS*~1 — A(S;) V2 < t < T. With the exception
of zero probability events, which do not affect agent’s utlity, we can deduce that the two definitions are equivalent.
For a proof, see Lemma 3 in de Oliveira [2018].

2As with information structures, an equivalent way to think of the agent’s strategy is a family of stochastic
mappings o = (‘Tf)thl’ where o : S1 = A(Aq),and oy : St x A*™1 — A(A;) V2 <t < T. Ttis possible to deduce
one formulation from the other.



design problem then is to characterize the set of feasible joint distributions. To do that we will

invoke the notion of a deviation rule.

2.4 Deviation rules

A deviation rule is simply an adapted mapping D : A — A(A), where recollect that being
adapted means that the marginal distribution on A?, the (potentially random) deviation strategy
for the first ¢ periods, depends only on A?, the first ¢ elements of the original strategy from
which the agent is deviating. We can think of the deviation rule as a list of alternative actions
the agent would take as a function of the actions she originally intended to take. Importantly, a
deviation rule is a fully prescribed plan, so that if o is the original strategy, then D o o (als) too
is a well-defined strategy.

In what follows, we will first use deviation rules to characterize the empirical content of the
dynamic information design problem: It organizes in an intuitive way the system of inequalities

that describes the feasible set of joint distributions over signals and actions.

3 Characterization of the empirical content

Fix the set of joint distributions that agree with the prior as the marginal on the states of the

world:

Fp:{yeA(AxQHZy(a,w):p(a))VwEQ}.

acA
Then, from Definition 3, we know that a joint distribution y € T’y is feasible if there exists a

sequential information structure 7 and a strategy o such that
U(o,m,p)>U(c’,n,p) Vo', and

the joint distribution generated by (o, 7, p) on A x Q is the same as y,. Following de Oliveira
and Lamba [2025], we can reduce the complexity of the search for feasibility from any sequential

information structure to a direct information structure.
Definition 4. (o, ) is an obedient tuple if S = A and o = Idy.

An obedient tuple is given by an information structure which recommends an action, and
a strategy of the agent which always obeys the recommendation. When an action sequence can
be deemed feasible with an obedient tuple, we say that it is obediently feasible. The obedience

principle for dynamic information design then immediately follows.



Lemma 1 (Obedience principle). Ify, € I, is feasible, then it is obediently feasible.

Using the obedience principle, and the concept of deviation rule, the empirical content of

the model can be readily characterized as follows.

Theorem 1. A distributiony, € T, is feasible if and only if there exists a deviation rule D : A —
A (A) such that

Z [# (a,w) = u (D (a),w)] y, (a,w) >0.

aw

A simple intuition follows: If y, is feasible, then from Lemma 1, it is obediently feasible.
Under such an obedient feasibility, since § = A, any alternative strategy 0~ is an adapted mapping
from A to A, and hence a deviation rule, and the obedience constraint reads as stated in the result
above. If, conversely, y is not feasible, then the candidate obedient strategy is not optimal, and
there must be an alternative strategy—a deviation rule—that improves upon it, that is satisfies the
opposite of the inequality in the result. This proves the dual characterization stated in Theorem
1.

The result is a direct dynamic generalisation of single-player obedience constraints in infor-
mation design (see surveys by Bergemann and Morris [2019] and Kamenica [2019]), restricted
here to single agent problem. In the lexicon of that literature, all distributions y € A(A x Q)
that satisfy the above inequality for all deviation rules can be supported as a “Bayes correlated
equilibrium” of our decision problem.’ This static version of the constraint has also been used
by Caplin and Martin [2015] to characterize the empirical content of Bayesian decision problem
faced by a large population of agents. As we discuss in our earlier work, a similar interpretation
to the dynamic problem as well in characterizing the empirical content of arbitrary dynamic

decision problems with varying sequential information structures.

4 Feasible actions

The main objective of this paper is to characterize the feasible marginals on actions sequences
for any fixed prior. As we argued in the introduction, in many realistic scenarios, it may not be
feasible for an analyst or an econmetrician to jointly observe the action sequence taken by an
agent and the realization of the corresponding state of the world, even though the prior on the

states is well known. To that end, the analyst must have access to a technique that allows her

3Just as the objective of the linear program in information design is to identify the set of binding obedience
constraints, the objective of the above result is to identify the critical deviation rule.



to characterize the empirical content of the model with access to the prior and the observable

action sequences. We start by updating the notion of feasibility to adjust to this reality.
Definition 5. A distribution @ € A(A) is feasible if there exists (o, ) such that

1. o €argmax U (6,7,p), and

2.c0omop= y.4
Now, define the set of joint distributions with fixed marginals:
Top = {y €EAAXQ)| ) y(@w) =a@Vac A& y(@w) =pw Voe Q}.
aweQ acA

The main result, a tight characterization of the set of feasible joint distributions that agree with

given marginals, follows.

Theorem 2. A distribution a over action sequences @ € A(A) is feasible under a decision problem
u: AXQ — Rwithprior p € A(Q) ifand only ifthereexistsa ¢ : Q — Rsuch that Y., p(w)p(w) =
0 and

mein [ (a,w) —u (D (a),w) + ¢ (w)] @ (a) > 0.

Proof. Let
F={yeA@xA)ly(w) =p(w),y(a)=a(a},

be the set of joint distribution consistent with both marginals p and @. By Lemma 1, the question

can be restated as: “is there a y € I' such that

D # (a,0) = u (D (a),w)] y(w,a) >0

w,a

for all deviation rules D?” In other words, is it true that
i > - D > > 2 O>
I)I/’lealz(ﬁgl’l; [# (a,w) —u (D (a),w)]y (w,a)
Using the minimax theorem (see Sion [1958]) this question is equivalent to asking whether

ngnr;lgng; (4 (a,w) — u (D (a),w)] v (w,a) > 0.

#Since o o 7 o p generates a joint distribution over A x Q, this essentially means that the marginal of o o 7 0 p on
A equals 7.



The maximization problem inside is an optimal transport problem and we can calculate its dual

to obtain

max ), [ (6.0) = (D (@), )y (@,0) = min ) @)p @)+ ) ¥ (e (@)

w,a

where C = {(¢,¢) |Yw, a, ¢ (w) +¥ (a) > u (a,w) —u (D (a),w)}.

For a given ¢, the ¥ that solves the minimization above is

¥ (a) = max [u (a,0) —u (D (a),0) - ¢ (0)].

Thus, the question becomes: is it true that for every ¢ and D, we have
D max[u (a,0) —u (D (a),0) —¢ ()] @ (@) + ) ¢ (@) p(w) >0

The negation of this statement (meaning that @ cannot be rationalized) asks: is there a ¢ and D

such that
D min [u (D (a),0) ~# (a,0) +¢ (@] (@) = ) ¢ (w)p(w) >0

Moreover, since adding a constant to ¢ does not alter the inequality, we can normalize it and

restate the question as: is there a D and a ¢ such that ), ¢ (w) p (w) = 0 and

ergn [4 (D (a),w) - (a,0) + ¢ (w)] @ (a) > 0.

O

Notice that, taking ¢ = 0, the condition becomes the same as when we let the prior be
arbitrary (see de Oliveira and Lamba [2025]). Restricting the prior to p then makes it easier to
find a deviation rule that rejects the model, because of the flexibility afforded by the choice of
¢. We can think of ¢ as a transfer between states, with the exchange rate given by p.

Now Theorem 2 presents a characterization of the set feasible action profiles in an arbitrary
information design problem. In many settings, the modeler is interested in not just interested
in characterizing the entire set of feasible distributions, rather by equipping the "sender" or the
"principal” with some preferences, she wants to find out the optimal information structure too.

To show the workings of such an exercise, we now present a example that seeks to maximize



the probability of an apparently dominated action sequence—that is one which the sender can
never induce the agent to take with a static information structure, but can with some positive

probability, when she has access to a dynamic information structure.

5 A two-pronged approach

Theorem 2 gives an if and only if result, so if we can compute the function
Ala) = maxz min [# (D (a),w) -« (a,w) + ¢ (w)] @ (a),
D,y 3 w

we know precisely the set of @’s that can be induced by a suitable choice of information structure.
A persuasion problem is simply a maximization problem over that set of a’s.

In practice, however, just as the set of information structures can be large, the set of all
deviation rules can also be large, so computing A(@) can be tiresome. A more practical method
is to combine both approaches. First use the idea of the theorem to find an upper bound on

A(a). If for some deviation rule D, we have
> min [# (D (a), ) - # (a,0) + ¢ ()] @ (a) >0,

then a cannot be feasible. This means that, by considering a subset of deviation rules, we can
rule out many distributions.

Second, to show that & can be rationalized, it is sufficient to find a joint distribution y € Ty,
that satisfies all obedience constraints. If we can directly show that everything that was not ruled
out by our subset of deviation rules can be rationalized, we have a complete characterization of

the set of feasible distributions over actions.

6 An example of information design through deviation rules

In this section, we illustrate through an example how our result can be used to solve dynamic
persuasion (or information design) problems. We consider the following two period decision
problem based on Ely and Szydlowski [2020]: The agent faces a task and has a choice of working
or not working in each period, where working has an effort cost of ¢. The agent is unsure about

whether the task is easy or hard, so Q = {E, H} with prior p = (pg, pr). If it is easy, a single

10



round of work suffices for the agent to get the reward R; if it is hard, the agent will only get the

reward R if they work in both periods. Payoffs and decision tree are represented as follows:

w n
n| (wn) | (w,w) 0

hard | 0| —-¢ | R-2c W/ \n 0

easy | 0| R—c | R-2c R —-2c —C

R —-2c R-c

The question we ask is: what is the maximum probability with which we can induce the
agent to work twice? So in the language of information design, the “sender’s” preference is
simply to maximize the probability of the actions sequence (w,w). To avoid uninteresting
cases, we assume 0 < ¢ < R <2cand 0 < PE-pH < 1.

It is easy to that the action sequence (w, w) is apparently dominated—there exists an alter-
nate action sequence, simply choosing 7 in the first period, such that the agent gets a strictly
higher payoff in each state of the world. Therefore, no static information structure can deem the
selection of this action sequence feasible, but a dynamic information structure can. Moreover,
since (w, w) is apparently dominated, no (dynamic) information structure for any interior prior
can induce the agent to pick it with probability 1. So the information design exercise is to pin
down the highest feasible probability of an optimizing agent selecting (w, w) as a function of p.

To simplify notation, we let ¥ = % in what follows.

6.1 Deviating from work to not work in the first period

First we consider the first-period deviation rule, from work to not work. In this case, with a
fixed prior, this deviation rule rejects a distribution over action sequences if there exists a ¢ £, o

such that rpr + ¢pr = 0and

min {¢g, ¢}y () +min{2c — R+ ¢, 2c — R+ ¢}y (ww)+

min{c - R+ yg,c+pg}ty(wn)>0.

Letting ¢ = Pk;E and pp = — %, we get that the deviation rule does not reject a distribution

11



Figure 2: The function is negative if and only if it is negative at both kinks.

over action sequences if, for all £ € R, we have

min {[%, —]%} v (n)+ (ZC — R + min {PEE’ —%}) v (ww)+

min{c—R+£,c—£}y(wn} < 0.

The left-hand-side is a piece-wise linear function that is increasing for low values of k, de-
creasing for high values of &, and has two kinks, at £ = 0 and & = Rpgpp. Thus, to prove that
this function is always negative, it is enough to show that its values at the two kinks are negative.

At k = 0 this gives us the condition
(2c—=R)y (ww)+ (c —R)y (wn) <0.

or
R-o¢)
(2¢ = R)

v (ww) < v (wn) (1)

This shows that an upper bound for the value of y (ww) is given by

R—
y(ww) < G (1= y (o)
which becomes
v (ww) < C=%—1. (2)

12



Atk = Rprpu > 0, we get the condition

_Rpepu
PH

v (n)+ 2C—R—RpEpH)y(ww)+(c—RpEpH
pH PH

)y(wn) <0
or

(2c = R — Rpg) vy (ww) < Rpey (n) + (Rpe —¢) y (wn).

Substituting y () = 1-y (ww)—y (wn), we can write this inequality purely in terms of y (ww)
and vy (wn):
(2c = R)y (ww) < Rpg — cy (wn) .

Using (1), we get

2c — R

(2c =R)y (ww) < Rpg —c¢ R_Cy(ww)
or
R-¢ 1-«
y(ww) < 5—ppr =5 —(1-pn). 3)

6.2 Deviating from Work to not work in the second period

Now we consider another deviation rule, that deviates from work to not work in the second
period, and does not deviate from the other sequences. This deviation rejects a distribution over

action sequences if there exists a ¢, ¢ such that oppr + ¢gpr = 0and

min{¢g, i} [y (n) +y (wn)] +min{c +¢r.c —R+¢n}y (ww) > 0.

k.
PE

over action sequences if, for all £ € R, we have

and @77 = £, we get that the deviation rule does 7ot reject a distribution

Letting ¢ = — o

min {_[%PILH} [y (n) +y (wn)] + min {c - ]%,c -R+ :;H}y (ww) < 0.

As before, this is a piecewise linear concave function with two kinks, at # = 0Oand atk = Rprpy.
At k = 0 we get the inequality
(c=R)y (ww) <0

which holds trivially. Atk = Rprpr > 0 we get

—Rpu [y (n) +y (wn)] + (C - RpH) v (ww) < 0.

13



and substituting y (7) +y (wn) = 1 -y (ww), we get
R
y (ww) < i 4
Putting together the inequalities (2),(3), and (4), we get the following bound

b for py <1-«

v (ww) <

X |=

1
-1 for1 -« <pm <, -1

21K_—K1 (1-pm) for % -1<pu

6.3 Lower bound by construction of information structure

So far, we have obtained an upper bound on the probability of the agent choosing to work twice.
To show that this upper bound is tight, we now construct an information structure that reaches

it. We divide the construction in cases, depending on how the prior belief relates to «.

6.3.1 PH < 1-k

In this case, the agent believes that the problem is easy with a high probability, so the agent
already has a high incentive to work in the first period. Therefore let’s start assuming that the
agent gets no information in the first period.

In the second period, assume that the agent is always told to work when the problem is hard
and let a be the probability that the agent is told to work and the problem is easy. To achieve the
upper bound, we must have a + pyr = 22, or a = py (1 — 1). We can check that the obedience
constraint is indeed satisfied: the probability that the problem is hard when the agent is told to
work is 5THp = k, making the agent exactly indifferent between working and not working when

told to work. This gives the agent an ex-ante expected utility of
(a+pa)(R=2c)+(1-a-pyg)(R-c)=R - (1+‘DTH)C_

which is positive so long as py < 1 — «, so the agent also has an incentive to work in the first

period.

14



1
632 1-k<pyg<, -1

When ppr > 1—«, the previous information structure would not give the agent enough incentive
to work in the first period. We can take care of this by changing a, the probability that the agent
is told to work twice and the state is easy. To achieve the upper bound, we write a +py = L — 1.

K

The agent’s belief that the state is hard when told to work the second time is

pPH PH
a+py 11

where the inequality follows from pyy > 1—«. This means that the agent has indeed an incentive
to work when told to do so.

Notice that when pyy = 1 =1, 2 = 0, so the agent is given full information.

6.33 pg>1-1

When the agent believes the problem is hard with high probability, they will not have an in-
centive to work in the first period, unless they receive some information in the first period. Let
b < pm be the probability that the agent is told to work and the problem is hard in the first
period. We choose & so that, after being told to work in the first period, the agent believes the

probability of the state being hard is

L
b+1-py «

In the second period, we proceed as in the previous case: the agent is given full information,
getting an expected payoff of zero. Thus the probability that the agent ultimately chooses to

work twice is given by
p=(opm T Lok
SO T T M

which is precisely the upper bound we found before. This finishes the proof that the bound is
tight.
7 Final remarks

This paper presents a duality result that completely characterizes the empirical (informational)
content of a general dynamic decision problem. It argues that the instrument of deviation rule

can help unify disparate studies that explore similar questions in the burgeoning literature on

15



static and dynamic information design.
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