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Abstract

This paper studies a general dynamic information design problem and shows how the

empirical content therein can be completely characterized using the instrument of deviation

rules.

1 Introduction

There is an underlying state of theworld distributed according to a fixed prior. An agent observes

a signal correlated with this state, takes an action, observes another signal, and takes another

action until some finite terminal period. The payoff is realized at the end as a function of the

actions taken and the state of the world, which can be non-separable in actions. The problem is

described in Figure 1.
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Figure 1: The timeline of signals and actions

The main question we ask is: What distributions over action sequences are feasible, given

that the agent is assumed to be Bayesian and expected utilitymaximizer? Moreover, if we provide

agency to the sender of the information through a specific objective function which is different

than the agent, what is the optimal dynamic information structure for the sender?
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This may be christened a dynamic information design problem with a single agent. Concep-

tually, this class of problems explores how information can be used as an instrument to induce

rational agents to take actions over time that would be strictly suboptimal if they were exposed

only to a static information structure, either at the outset or even at some fixed time in the future.

Empirically, they can help characterize the set of distributions observable amongst a population

of agents making similar choices over time, without imposing any parametric assumption on the

information they are observing. A formal way to describe the empirical content of the Bayesian

problem is to identify the restrictions imposed by the joint hypothesis of Bayesian rationality

and the specific payoff function u, but without any hypothesis on the information structure.

If T = 1, this setup is exactly the Bayesian persuasion problem studied in Kamenica and

Gentzkow [2011] or the single-agent version of the information design problem studied in Berge-

mann andMorris [2016]. Relatedly, Caplin andMartin [2015] put the framework to understand-

ing the empirical content of the static Bayesian decision problem—what joint distributions over

actions and states are consistent with a particular information structure; which is extended in

Caplin and Dean [2015] to account for Shannon costs of information acquisition.

When the prior is not fixed and is also included as a flexible seed of the arbitrary sequential

information structure, de Oliveira and Lamba [2025] characterized the empirical content of the

problem for T > 1: What class of joint distributions over actions sequences and states of the

world can be rationalized for a fixed dynamic decision problem when the analyst does not know

the prior or the dynamically arriving signals? It also noted that in many applications at hand,

the analyst may not have access to information over realized states of the world, and only be

able to record the observed action sequences. To tackle such scenarios, it developed a result for

rationalizing the distribution only over action sequences, that is, marginal over actions of the

aforementioned joint distribution.

Themain contribution of this paper is to further restrict the prior in this analysis. So now the

mathematical statement of the problem is to find a marginal distribution over action sequences

that, along with the fixed prior, completes a joint distribution that could have been generated by

a Bayesian agent that maximizes expected utility. In doing that, it relates to a number of recent

studies in both static and dynamic information design.

Analogous questions have been raised in Rehbeck [2023] and Doval et al. [2024], for the

case of T = 1. These papers also motivate their studies by appealing to the inability of the

outside analyst to infer data on realized states, so the analyst must restrict himself to rationalizing

distribution over actions. They present distinct duality results, and mapping them to ours for
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the case of T = 1 remains an interesting open question.

In addition, a number of recent papers study the rationalization of optimal stopping times in

dynamic models of persuasion; see, for example, Ely and Szydlowski [2020], Hébert and Zhong

[2025], Koh and Sanguanmoo [2024], and Saeedi et al. [2025]. These studies, in various contexts

and to varying levels of generality, examine the extent to which an agent can be made to wait or

take consecutive actions by the principle when their preferences are misaligned.

The novelty we bring to this exciting and burgeoning literature is to evaluate an otherwise

complicated set of dynamic obedience constraints through the compact tool of deviation rules.

To pin down the set of feasible action sequences that can be taken by a rational Bayesian agent,

we can proceed in two ways:

1. Guess a binding deviation rule that provides an upper bound on the set of distributions

that can be rationalized, and then guess an information structure that achieves that bound.

This avoids the cumbersome task of traversing the entire universe of information struc-

tures to establish either feasibility or optimality.

2. More systematically, the problem of using deviation rules can be set up as a tractable linear

program, and so the binding deviation rule can be computationally determined.

This methodology of studying dynamic information design through deviation rules helps

reduce it to a static problem and unify various other models that solve these problems exclusively

in the space of information structures. As the reader would notice, there are few assumptions

imposed on the dynamic decision problem here; in particular, preferences are allowed to be

arbitrary, non-separable over time.

2 Model

2.1 Notation

A stochastic map from X to a finite set Y is a function α : X → Δ(Y ), where Δ(Y ) is the set of

probability distributions over Y . We represent the probability assigned to y at the point x by

α(y |x). The composition of two stochastic maps α : X → Δ(Y ) and β : Y → Δ(Z) is given by

β ◦ α(z |x) =
∑︁
y∈Y

β (z |y)α(y |x).
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We can think of a lottery as a stochastic mapping whose domain is a singleton. Therefore, given

α ∈ Δ(Y ) and β : Y → Δ(Z), we write

β ◦ α(z) =
∑︁
y∈Y

β (z |y)α(y)

to be the probability with which z is chosen by β ◦ α.

For a real-valued function u : Y → R and for a lottery α ∈ Δ(Y ), we denote by u (α) =∑
y∈Y

α(y)u (y) the expected value of u (.) under the distribution α.

Throughout the text, we consider a finite number of time periods t = 1, . . . ,T . For a

collection of sets (X t )Tt=1, we will use the following notation

X t =

t∏
τ=1

Xτ X =

T∏
τ=1

Xτ

with elements xt ∈ X t and x ∈ X . Finally, a stochastic map α : X → Δ(Y ) is said to be

adapted if the marginal probability of the first t terms of y depends only on the first t terms of

x; formally, it is adapted if the function

∑︁
yt+1,...,yT

α(y1, . . . , yt , yt+1, . . . yT |x1, . . . , x t , x t+1, . . . , xT )

is constant in x t+1, . . . , xT .

2.2 Primitives

The basic model on which the information design problem is layered is based on de Oliveira

and Lamba [2025] and is as follows: In each time period t , the agent chooses an action at from a

finite set At . Payoffs are determined after period T by a utility function u (a, ω), which depends

on the entire action sequence a = (a1, . . . , aT ) ∈ A and a potentially unknown state of the world

ω drawn from a finite set Ω. There are no other restrictions on the utility function.

There is a fixed prior p ∈ Δ(Ω). Thence the agent is informed about the underlying state

of the world over time through a sequence of signals. The timeline of the dynamic decision

problem is expressed in Figure 1. Every period, before taking an action, the agent observes a

signal that is (potentially) correlated with the state of the world and with the signals she has

observed in the past. Formally, the sequence of signals is generated by a sequential information

structure:
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Definition 1. A sequential information structure is a sequence of finite sets of signals (St )Tt=1
and a stochastic mapping π : Ω → Δ (S).1

The agent’s strategy maps each sequence of signals into a lottery over actions every period,

with the restriction that the agent cannot base the choice of an action on signals that have not

yet been revealed, which we call adaptedness.

Definition 2. A strategy for the agent is an adapted stochastic mapping σ : S → Δ (A).2

Given the sequential information structure π and agent’s strategy σ, the probability that

the agent takes a given sequence of actions in each state of the world ω is given by σ ◦ π (a|ω).

Finally, given a prior p ∈ Δ(Ω), she can evaluate her expected payoff:

U
(
σ, π, p

)
=
∑︁
ω∈Ω

p (ω)
∑︁
a∈A

σ ◦ π (a|ω) u (a, ω).

The agent’s problem then is to choose an optimal σ given π and p.

2.3 Feasibility

A key first step in any information design problem is to define the notion of feasibility. In

the context of our model this translates to which action sequences and signals can be jointly

rationalized by an agent who is best responding to the observed information. The notion of

feasibility will thus be described thorough a joint distribution over actions and signals.

Definition 3. A distribution γ ∈ Δ(A ×Ω) is said to be feasible if there exists (σ, π) such that

1.
∑
a∈A

γ (a, ω) = p (ω) ∀, ω ∈ Ω,

2. σ ∈ argmax
σ̂

U
(
σ̂, π, p

)
, and

3. γ (a, ω) = σ ◦ π (a|ω) · p (ω) ∀ a ∈ A, ω ∈ Ω.

Thus a joint distribution γ is feasible if its marginal over the states of the world is equal to

the prior, and there exists a sequential information structure such that, in best responding to

it, the agent’s optimal strategy generates γ. The empirical content of the dynamic information

1We can equivalently define the sequential information structure period-by-period as follows. Let π = (πt )Tt=1 be
a family of stochastic mappings where π1 : Ω → Δ(S1), and πt : Ω× S t−1 → Δ(St ) ∀ 2 ≤ t ≤ T . With the exception
of zero probability events, which do not affect agent’s utlity, we can deduce that the two definitions are equivalent.
For a proof, see Lemma 3 in de Oliveira [2018].

2As with information structures, an equivalent way to think of the agent’s strategy is a family of stochastic
mappings σ = (σt )Tt=1, where σ1 : S1 → Δ(A1), and σt : S t × At−1 → Δ(At ) ∀ 2 ≤ t ≤ T . It is possible to deduce
one formulation from the other.
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design problem then is to characterize the set of feasible joint distributions. To do that we will

invoke the notion of a deviation rule.

2.4 Deviation rules

A deviation rule is simply an adapted mapping D : A → Δ(A), where recollect that being

adapted means that the marginal distribution on At , the (potentially random) deviation strategy

for the first t periods, depends only on At , the first t elements of the original strategy from

which the agent is deviating. We can think of the deviation rule as a list of alternative actions

the agent would take as a function of the actions she originally intended to take. Importantly, a

deviation rule is a fully prescribed plan, so that if σ is the original strategy, then D ◦σ (a|s) too

is a well-defined strategy.

In what follows, we will first use deviation rules to characterize the empirical content of the

dynamic information design problem: It organizes in an intuitive way the system of inequalities

that describes the feasible set of joint distributions over signals and actions.

3 Characterization of the empirical content

Fix the set of joint distributions that agree with the prior as the marginal on the states of the

world:

Γp =

{
γ ∈ Δ (A ×Ω) |

∑︁
a∈A

γ (a, ω) = p (ω) ∀ ω ∈ Ω

}
.

Then, from Definition 3, we know that a joint distribution γ ∈ Γp is feasible if there exists a

sequential information structure π and a strategy σ such that

U (σ, π, p) ⩾ U (σ′, π, p) ∀ σ′, and

the joint distribution generated by (σ, π, p) on A × Ω is the same as γp . Following de Oliveira

and Lamba [2025], we can reduce the complexity of the search for feasibility from any sequential

information structure to a direct information structure.

Definition 4. (σ, π) is an obedient tuple if S = A and σ = I dA.

An obedient tuple is given by an information structure which recommends an action, and

a strategy of the agent which always obeys the recommendation. When an action sequence can

be deemed feasible with an obedient tuple, we say that it is obediently feasible. The obedience

principle for dynamic information design then immediately follows.
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Lemma 1 (Obedience principle). If γp ∈ Γp is feasible, then it is obediently feasible.

Using the obedience principle, and the concept of deviation rule, the empirical content of

the model can be readily characterized as follows.

Theorem 1. A distribution γp ∈ Γp is feasible if and only if there exists a deviation rule D : A →

Δ (A) such that ∑︁
a,ω

[u (a, ω) − u (D (a) , ω)] γp (a, ω) ⩾ 0.

A simple intuition follows: If γp is feasible, then from Lemma 1, it is obediently feasible.

Under such an obedient feasibility, since S = A, any alternative strategy σ̂ is an adapted mapping

from A to A, and hence a deviation rule, and the obedience constraint reads as stated in the result

above. If, conversely, γ is not feasible, then the candidate obedient strategy is not optimal, and

there must be an alternative strategy—a deviation rule—that improves upon it, that is satisfies the

opposite of the inequality in the result. This proves the dual characterization stated in Theorem

1.

The result is a direct dynamic generalisation of single-player obedience constraints in infor-

mation design (see surveys by Bergemann and Morris [2019] and Kamenica [2019]), restricted

here to single agent problem. In the lexicon of that literature, all distributions γ ∈ Δ(A × Ω)

that satisfy the above inequality for all deviation rules can be supported as a “Bayes correlated

equilibrium” of our decision problem.3 This static version of the constraint has also been used

by Caplin andMartin [2015] to characterize the empirical content of Bayesian decision problem

faced by a large population of agents. As we discuss in our earlier work, a similar interpretation

to the dynamic problem as well in characterizing the empirical content of arbitrary dynamic

decision problems with varying sequential information structures.

4 Feasible actions

The main objective of this paper is to characterize the feasible marginals on actions sequences

for any fixed prior. As we argued in the introduction, in many realistic scenarios, it may not be

feasible for an analyst or an econmetrician to jointly observe the action sequence taken by an

agent and the realization of the corresponding state of the world, even though the prior on the

states is well known. To that end, the analyst must have access to a technique that allows her

3Just as the objective of the linear program in information design is to identify the set of binding obedience
constraints, the objective of the above result is to identify the critical deviation rule.
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to characterize the empirical content of the model with access to the prior and the observable

action sequences. We start by updating the notion of feasibility to adjust to this reality.

Definition 5. A distribution α ∈ Δ(A) is feasible if there exists (σ, π) such that

1. σ ∈ argmax
σ̂

U
(
σ̂, π, p

)
, and

2. σ ◦ π ◦ p = γ̄.4

Now, define the set of joint distributions with fixed marginals:

Γα,p =

{
γ ∈ Δ (A ×Ω) |

∑︁
aω∈Ω

γ (a, ω) = α(a) ∀ a ∈ A,&
∑︁
a∈A

γ (a, ω) = p (ω) ∀ ω ∈ Ω

}
.

The main result, a tight characterization of the set of feasible joint distributions that agree with

given marginals, follows.

Theorem 2. A distribution α over action sequences α ∈ Δ(A) is feasible under a decision problem

u : A×Ω → Rwith prior p ∈ Δ(Ω) if and only if there exists a φ : Ω → R such that∑ω p (ω)φ(ω) =

0 and ∑︁
a
min
ω

[u (a, ω) − u (D (a) , ω) + φ (ω)] α (a) ⩾ 0.

Proof. Let

Γ =
{
γ ∈ Δ (Ω × A) |γ (ω) = p (ω) , γ (a) = α (a)

}
,

be the set of joint distribution consistent with bothmarginals p and α. By Lemma 1, the question

can be restated as: “is there a γ ∈ Γ such that

∑︁
ω,a

[u (a, ω) − u (D (a) , ω)] γ (ω, a) ⩾ 0

for all deviation rules D?” In other words, is it true that

max
γ∈Γ

min
D

∑︁
ω,a

[u (a, ω) − u (D (a) , ω)] γ (ω, a) ⩾ 0?

Using the minimax theorem (see Sion [1958]) this question is equivalent to asking whether

min
D

max
γ∈Γ

∑︁
ω,a

[u (a, ω) − u (D (a) , ω)] γ (ω, a) ⩾ 0.

4Since σ ◦ π ◦ p generates a joint distribution over A×Ω, this essentially means that the marginal of σ ◦ π ◦ p on
A equals γ̄.
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The maximization problem inside is an optimal transport problem and we can calculate its dual

to obtain

max
γ∈Γ

∑︁
ω,a

[u (a, ω) − u (D (a) , ω)] γ (ω, a) = min
(φ,ψ) ∈C

∑︁
ω

φ (ω) p (ω) +
∑︁
a
ψ (a) α (a)

where C = {(φ, ψ) |∀ω, a, φ (ω) + ψ (a) ⩾ u (a, ω) − u (D (a) , ω)}.

For a given φ, the ψ that solves the minimization above is

ψ (a) = max
ω

[u (a, ω) − u (D (a) , ω) − φ (ω)] .

Thus, the question becomes: is it true that for every φ and D , we have

∑︁
a
max
ω

[u (a, ω) − u (D (a) , ω) − φ (ω)] α (a) +
∑︁
ω

φ (ω) p (ω) ⩾ 0

The negation of this statement (meaning that α cannot be rationalized) asks: is there a φ and D

such that

∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω) + φ (ω)] α (a) −
∑︁
ω′

φ (ω′) p (ω′) > 0

Moreover, since adding a constant to φ does not alter the inequality, we can normalize it and

restate the question as: is there a D and a φ such that
∑
ω φ (ω) p (ω) = 0 and

∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω) + φ (ω)] α (a) > 0.

□

Notice that, taking φ = 0, the condition becomes the same as when we let the prior be

arbitrary (see de Oliveira and Lamba [2025]). Restricting the prior to p then makes it easier to

find a deviation rule that rejects the model, because of the flexibility afforded by the choice of

φ. We can think of φ as a transfer between states, with the exchange rate given by p.

Now Theorem 2 presents a characterization of the set feasible action profiles in an arbitrary

information design problem. In many settings, the modeler is interested in not just interested

in characterizing the entire set of feasible distributions, rather by equipping the "sender" or the

"principal" with some preferences, she wants to find out the optimal information structure too.

To show the workings of such an exercise, we now present a example that seeks to maximize
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the probability of an apparently dominated action sequence—that is one which the sender can

never induce the agent to take with a static information structure, but can with some positive

probability, when she has access to a dynamic information structure.

5 A two-pronged approach

Theorem 2 gives an if and only if result, so if we can compute the function

Δ(α) = max
D,φ

∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω) + φ (ω)] α (a) ,

we knowprecisely the set of α’s that can be induced by a suitable choice of information structure.

A persuasion problem is simply a maximization problem over that set of α’s.

In practice, however, just as the set of information structures can be large, the set of all

deviation rules can also be large, so computing Δ(α) can be tiresome. A more practical method

is to combine both approaches. First use the idea of the theorem to find an upper bound on

Δ(α). If for some deviation rule D , we have

∑︁
a
min
ω

[u (D (a) , ω) − u (a, ω) + φ (ω)] α (a) > 0,

then α cannot be feasible. This means that, by considering a subset of deviation rules, we can

rule out many distributions.

Second, to show that α can be rationalized, it is sufficient to find a joint distribution γ ∈ Γα,p

that satisfies all obedience constraints. If we can directly show that everything that was not ruled

out by our subset of deviation rules can be rationalized, we have a complete characterization of

the set of feasible distributions over actions.

6 An example of information design through deviation rules

In this section, we illustrate through an example how our result can be used to solve dynamic

persuasion (or information design) problems. We consider the following two period decision

problem based on Ely and Szydlowski [2020]: The agent faces a task and has a choice of working

or not working in each period, where working has an effort cost of c . The agent is unsure about

whether the task is easy or hard, so Ω = {E,H } with prior p = (pE , pH ). If it is easy, a single
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round of work suffices for the agent to get the reward R; if it is hard, the agent will only get the

reward R if they work in both periods. Payoffs and decision tree are represented as follows:

n (w,n) (w,w)

hard 0 −c R − 2c

easy 0 R − c R − 2c R − 2c

R − 2c

w

−c

R − c

n

w
0

0

n

The question we ask is: what is the maximum probability with which we can induce the

agent to work twice? So in the language of information design, the “sender’s” preference is

simply to maximize the probability of the actions sequence (w,w). To avoid uninteresting

cases, we assume 0 < c < R < 2c and 0 < pE , pH < 1.

It is easy to that the action sequence (w,w) is apparently dominated—there exists an alter-

nate action sequence, simply choosing n in the first period, such that the agent gets a strictly

higher payoff in each state of the world. Therefore, no static information structure can deem the

selection of this action sequence feasible, but a dynamic information structure can. Moreover,

since (w,w) is apparently dominated, no (dynamic) information structure for any interior prior

can induce the agent to pick it with probability 1. So the information design exercise is to pin

down the highest feasible probability of an optimizing agent selecting (w,w) as a function of p.

To simplify notation, we let κ = c
R in what follows.

6.1 Deviating from work to not work in the first period

First we consider the first-period deviation rule, from work to not work. In this case, with a

fixed prior, this deviation rule rejects a distribution over action sequences if there exists a φE , φH

such that φE pE + φH pH = 0 and

min {φE , φH } γ (n) +min {2c − R + φE , 2c − R + φH } γ (ww) +

min {c − R + φE , c + φH } γ (wn) > 0.

Letting φE = k
pE and φH = − k

pH , we get that the deviation rule does not reject a distribution
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Figure 2: The function is negative if and only if it is negative at both kinks.

over action sequences if, for all k ∈ R, we have

min
{
k
pE
,− k

pH

}
γ (n) +

(
2c − R +min

{
k
pE
,− k

pH

})
γ (ww) +

min
{
c − R + k

pE
, c − k

pH

}
γ (wn) ⩽ 0.

The left-hand-side is a piece-wise linear function that is increasing for low values of k, de-

creasing for high values of k, and has two kinks, at k = 0 and k = RpE pH . Thus, to prove that

this function is always negative, it is enough to show that its values at the two kinks are negative.

At k = 0 this gives us the condition

(2c − R) γ (ww) + (c − R) γ (wn) ⩽ 0.

or

γ (ww) ⩽ (R − c)
(2c − R) γ (wn) (1)

This shows that an upper bound for the value of γ (ww) is given by

γ (ww) ⩽ (R − c)
(2c − R) (1 − γ (ww))

which becomes

γ (ww) ⩽ R − c
c

=
1
κ
− 1. (2)
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At k = RpE pH > 0, we get the condition

−
RpE pH
pH

γ (n) +
(
2c − R −

RpE pH
pH

)
γ (ww) +

(
c −

RpE pH
pH

)
γ (wn) ⩽ 0

or (
2c − R − RpE

)
γ (ww) ⩽ RpEγ (n) +

(
RpE − c

)
γ (wn) .

Substituting γ (n) = 1−γ (ww)−γ (wn), we can write this inequality purely in terms of γ (ww)

and γ (wn):

(2c − R) γ (ww) ⩽ RpE − cγ (wn) .

Using (1), we get

(2c − R) γ (ww) ⩽ RpE − c
2c − R
R − c

γ (ww)

or

γ (ww) ⩽ R − c
2c − R

pE =
1 − κ

2κ − 1
(1 − pH ). (3)

6.2 Deviating from Work to not work in the second period

Now we consider another deviation rule, that deviates from work to not work in the second

period, and does not deviate from the other sequences. This deviation rejects a distribution over

action sequences if there exists a φE , φH such that φE pE + φH pH = 0 and

min {φE , φH } [γ (n) + γ (wn)] +min {c + φE , c − R + φH } γ (ww) > 0.

Letting φE = − k
pE and φH = k

pH , we get that the deviation rule does not reject a distribution

over action sequences if, for all k ∈ R, we have

min
{
− k
pE
,
k
pH

}
[γ (n) + γ (wn)] +min

{
c − k

pE
, c − R + k

pH

}
γ (ww) ⩽ 0.

As before, this is a piecewise linear concave function with two kinks, at k = 0 and at k = RpE pH .

At k = 0 we get the inequality

(c − R) γ (ww) ⩽ 0

which holds trivially. At k = RpE pH > 0 we get

−RpH [γ (n) + γ (wn)] +
(
c − RpH

)
γ (ww) ⩽ 0.
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and substituting γ (n) + γ (wn) = 1 − γ (ww), we get

γ (ww) ⩽ R
c
pH (4)

Putting together the inequalities (2),(3), and (4), we get the following bound

γ (ww) ⩽



pH
κ for pH ⩽ 1 − κ

1
κ − 1 for 1 − κ < pH ⩽ 1

κ − 1

1−κ
2κ−1

(
1 − pH

)
for 1

κ − 1 < pH

6.3 Lower bound by construction of information structure

So far, we have obtained an upper bound on the probability of the agent choosing to work twice.

To show that this upper bound is tight, we now construct an information structure that reaches

it. We divide the construction in cases, depending on how the prior belief relates to κ.

6.3.1 pH ⩽ 1 − κ

In this case, the agent believes that the problem is easy with a high probability, so the agent

already has a high incentive to work in the first period. Therefore let’s start assuming that the

agent gets no information in the first period.

In the second period, assume that the agent is always told to work when the problem is hard

and let a be the probability that the agent is told to work and the problem is easy. To achieve the

upper bound, we must have a + pH =
pH
κ , or a = pH

( 1
κ − 1

)
. We can check that the obedience

constraint is indeed satisfied: the probability that the problem is hard when the agent is told to

work is pH
a+p = κ, making the agent exactly indifferent between working and not working when

told to work. This gives the agent an ex-ante expected utility of

(a + pH ) (R − 2c) + (1 − a − pH ) (R − c) = R −
(
1 +

pH
κ

)
c .

which is positive so long as pH ⩽ 1 − κ, so the agent also has an incentive to work in the first

period.
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6.3.2 1 − κ < pH ⩽ 1
κ − 1

When pH > 1−κ, the previous information structure would not give the agent enough incentive

to work in the first period. We can take care of this by changing a, the probability that the agent

is told to work twice and the state is easy. To achieve the upper bound, we write a + pH = 1
κ − 1.

The agent’s belief that the state is hard when told to work the second time is

pH
a + pH

=
pH
1
κ − 1

> κ,

where the inequality follows from pH > 1− κ. This means that the agent has indeed an incentive

to work when told to do so.

Notice that when pH = 1
κ − 1, a = 0, so the agent is given full information.

6.3.3 pH > 1
κ − 1

When the agent believes the problem is hard with high probability, they will not have an in-

centive to work in the first period, unless they receive some information in the first period. Let

b ⩽ pH be the probability that the agent is told to work and the problem is hard in the first

period. We choose b so that, after being told to work in the first period, the agent believes the

probability of the state being hard is

b
b + 1 − pH

=
1
κ
− 1.

In the second period, we proceed as in the previous case: the agent is given full information,

getting an expected payoff of zero. Thus the probability that the agent ultimately chooses to

work twice is given by

b = (1 − pH )
( 1
κ − 1

)
2 − 1

κ

=
1 − κ

2κ − 1
(1 − pH )

which is precisely the upper bound we found before. This finishes the proof that the bound is

tight.

7 Final remarks

This paper presents a duality result that completely characterizes the empirical (informational)

content of a general dynamic decision problem. It argues that the instrument of deviation rule

can help unify disparate studies that explore similar questions in the burgeoning literature on
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static and dynamic information design.

References

D. Bergemann and S. Morris. Bayes correlated equilibrium and the comparison of information

structures in games. Theoretical Economics, 11(2):487–522, 2016.

D. Bergemann and S. Morris. Information design: a unified perspective. Journal of Economic

Literature, 57(1):44–95, 2019.

A. Caplin and M. Dean. Revealed preference, rational inattention, and costly information ac-

quisition. American Economic Review, 105(7):2183–2203, 2015.

A. Caplin and D. Martin. A testable theory of imperfect perception. The Economic Journal,

125:184–202, 2015.

H. de Oliveira. Blackwell’s informativeness theorem using diagrams. Games and Economic

Behavior, 109:126–131, 2018.

H. de Oliveira and R. Lamba. Rationalizing dynamic choices. Fundação Getúlio Vargas-EESP

and Cornell University, 2025.

L. Doval, R. Eilat, T. Liu, and Y. Zhou. Revealed information. Columbia University and Ben

Gurion University, 2024.

J. C. Ely and M. Szydlowski. Moving the goalposts. Journal of Political Economy, 128(2):468—

506, 2020.

B. Hébert and W. Zhong. Engagement maximization. Stanford University, 2025.

E. Kamenica. Bayesian persuasion and information design. Annual Review of Economics, 11:

249–272, 2019.

E. Kamenica and M. Gentzkow. Bayesian persuasion. American Economic Review, 101(6):2590–

2615, 2011.

A. Koh and S. Sanguanmoo. Attention capture. MIT, 2024.

J. Rehbeck. Revealed bayesian expected utility with limited data. Journal of Economic Behavior

& Organization, 207:81–95, 2023.

16



M. Saeedi, Y. Shen, and A. Shourideh. Getting the agent to wait˙Carnegie Mellon University,

2025.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

17


	1 Introduction
	2 Model
	2.1 Notation
	2.2 Primitives
	2.3 Feasibility
	2.4 Deviation rules

	3 Characterization of the empirical content
	4 Feasible actions
	5 A two-pronged approach
	6 An example of information design through deviation rules
	6.1 Deviating from work to not work in the first period
	6.2 Deviating from Work to not work in the second period
	6.3 Lower bound by construction of information structure
	6.3.1 pH1-
	6.3.2 1-< pH1 -1
	6.3.3 pH> 1 -1


	7 Final remarks

