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Abstract

An agent takes a sequence of actions. The analyst does not have access to the agent’s in-

formation but knowns the utility function. Assuming the agent is Bayesian and an expected

utility maximizer, de Oliveira and Lamba [2025] established that the observed actions can-

not be justified if and only if there is a single deviation argument that leaves the agent better

off, regardless of the information. This paper develops an efficient method to characterize

the set of such deviation arguments. Specifically, the approach reduces the number of poten-

tially binding deviation rules that need to be considered, thereby enhancing computational

tractability.

1 Introduction

Suppose an agent takes a sequence of actions and observes a potentially new piece of information

about a payoff relevant state before taking each action. A natural question to ask is: What action

sequences can an outside analyst who understands the agent’s preferences and observes these

actions but not the information rationalize? A few examples make the question concrete.1

Example 1. A CEO faces an opportunity to invest in a project with uncertain payoffs: there

is a return of 4 if the project meets favorable conditions in the future (good state) and 0 if not

(bad state). The project bears fruits on two rounds of investment, and each round of investment

costs 1 unit. The CEO has three options: not invest, invest in the first round and pull back in

the second, or investment in both periods. The CEO’s payoff matrix and decision tree can be

summarized as follows:
*de Oliveira: Fundação Getúlio Vargas-EESP, henrique.deoliveira@fgv.br; Lamba: Cornell University,

rohitlamba@cornell.edu We are grateful to Gabriel Carroll and Ashwin Kambhampati for helpful comments.
1We invoked these examples first in our work de Oliveira and Lamba [2025].
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not invest & invest &

invest pull back invest

good 0 -1 2

bad 0 -1 -2
2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

Suppose that we learn that the CEO invested in the first round, incurring the initial cost,

but then pulled back. Some might interpret that as evidence of incompetence, saying that in no

state can this sequence of actions be justified. They might say that even if the CEO was not sure

about the state of the world, not investing would surely have been a better choice. These critics

would be ignoring a simple explanation: it might be that the CEO initially received good news

about the investment, but after the first round of investment learnt that the project was likely

to fail.

In Example 1, the action sequence (invest, pull back) is what we will call apparently dom-

inated—there exists another sequence of actions, (not invest, ∅), under which the agent does

strictly better in every state of the world.2 It will be easy to show that any action sequence that

cannot be rationalized is apparently dominated. However, as Example 1 shows, the converse

is not true. In fact, in Example 1, all three possible sequences of choices can be rationalized,

which illustrates how permissive this first criterion is. But it is not vacuous and can exclude

some dynamic choices. For instance, consider the following example:

Example 2. A firm can bet on one of two technologies, X or Y . The firm can also postpone

the decision, but by doing so its payoff is discounted by a factor δ, where 0 < δ < 1. The payoff

matrix and decision tree are as follows:

x y wx wy

X 5 3 5δ 3δ

Y 3 5 3δ 5δ
5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

Note that both wx and wy are apparently dominated, which does not necessarily rule them

out.3 We learn that the firm has decided to wait instead of making an immediate bet. Under

what values of δ can this choice be rationalized? By waiting, the firm can get at most 5δ. By
2Generally, an action sequence is apparently dominated if there exists another action sequence (or a lottery over

action sequences) that does strictly better in every state of the world.
3We are using the shorthand wx for (w, x) and wy for (w, y).
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making an immediate decision, the firm is guaranteed to get at least 3. Hence, if δ < 3/5, waiting

cannot be rationalized.

But this is not the full story. If the firm makes an immediate decision to randomize equally

between x and y, it is guaranteed an expected payoff of 4, no matter the state. Therefore, waiting

cannot be rationalized when δ < 4/5. On the other hand, if δ ⩾ 4/5, waiting can be explained

by the following information: it could be that the firm starts with an even prior and then fully

learns the state of the world in the second period. Thus, waiting can be rationalized precisely

when δ ⩾ 4/5.

More generally, for an arbitraryT -period decision problem, an action sequence can be ratio-

nalized when there exists a prior and a sequential information structure for which an optimizing

agent could end up choosing that action sequence with positive probability. Thus, to argue that

an action sequence can be rationalized, it is enough to provide a single information structure

and prior that prove it to be so; to argue that an action sequence cannot be rationalized, it must

be shown that every information structure and prior would fail to rationalize it.

In de Oliveira and Lamba [2025], we characterize the empirical content of this model– more

specifically, we present a dominance argument that provides a dual characterization of when an

action sequence cannot be rationalized by some sequential information structure. Generally speak-

ing, the argument is based on the idea of a deviation rule, which prescribes the agent to deviate

in specific ways while respecting the structure of the decision tree. If such a deviation leads to a

strict improvement in payoff with respect to the action sequence under consideration and does

not worsen payoffs elsewhere on the tree, we have dominance that ensures the said action rule

cannot be justified. For example, in Example 2, we found a single deviation that simultaneously

showed that every information structure would fail to rationalize waiting, thus avoiding direct

consideration of the set of all information structures.

Formally, a deviation rule is an adapted mapping from action sequences to lotteries over

action sequences, D : A → Δ(A). Adaptedness simply requires that deviations today can only

be a function of past actions and past deviations, and not of future actions or deviations. In

Example 1, if we map (invest, pull back) to (not invest, ∅), then adaptedness demands that we

have to map (invest, invest) also to (not invest, ∅).

Now, in full generality, as the size of the decision problem increases, so will the set of all

possible deviation rules. Although in many problems of economic interest, the appropriate

deviation rule that can potentially establish true dominance may be intuitive, but from the

perspective of computational complexity, it is useful to have a way of dealing with the constraint
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set imposed by understanding rationalization through deviation rules. In fact, in de Oliveira and

Lamba [2025], we show how the search for binding deviation rules can be reduced to an intuitive

linear proogram. Is there a formal way to reduce the size of the constraint set in this program?

In this paper, we devise such a way to restrict the class of potentially binding deviation rules.

The analysis is based on two simple ideas: If an action sequence is indeed dominated in the

sense described above, it seems wasteful to recommend deviating from the tree that contains

that action sequence. In addition, it is also unnecessary to form chains of deviations: if it makes

sense to deviate towards some action sequence, say b, then perhaps it also makes sense not to

deviate away from it.

The main result in the paper formalizes how the incorporation of these two observations

significantly reduces the set of potentially binding pure deviation rules, thereby reducing the

complexity of the underlying linear program. For example, in the context of Example 1, the

number of relevant pure deviation rules goes from a total of twenty seven to merely two.

Now, deviation rules are “mixed" strategies, and the randomization in an important part

of why they deliver a duality result for rationalizing dynamic choices through true dominance.

However, our result delivers a shrinking of the set of “pure" deviation rules. How should we

think about the gap?

One way we think about this problem is that the set of deviation rules is a polytope in RA×A,

and the problem of finding a dominating deviation rule reduces to a linear program involving

this polytope.4 Thus, it is useful to have a good description of this polytope.

A natural way to describe a polytope is via its extreme points. The extreme points of the

polytope of deviation rules are always pure deviation rules. This is why pure deviation rules

are important. When we say that “only two of them are relevant”, we mean that every rele-

vant mixed deviation rule can be written as a mixture of those two pure deviation rules. This

description is usually very helpful for finding the mixed deviation rules.

2 Model and definitions

2.1 Notation

A stochastic map from X to a finite set Y is a function α : X → Δ(Y ), where Δ(Y ) is the set of

probability distributions over Y . We represent the probability assigned to y at the point x by

4This is established in Proposition 4 in de Oliveira and Lamba [2025]
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α(y |x). The composition of two stochastic maps α : X → Δ(Y ) and β : Y → Δ(Z) is given by

β ◦ α(z |x) =
∑︁
y∈Y
β (z |y)α(y |x).

We can think of a lottery as a stochastic mapping whose domain is a singleton. Therefore, given

α ∈ Δ(Y ) and β : Y → Δ(Z), we write

β ◦ α(z) =
∑︁
y∈Y
β (z |y)α(y)

to be the probability with which z is chosen by β ◦ α.

For a real-valued function u : Y → R and for a lottery α ∈ Δ(Y ), we denote by u (α) =∑
y∈Y
α(y)u (y) the expected value of u (·) under the distribution α.

Throughout the text, we consider a finite number of time periods t = 1, . . . ,T . For a

collection of sets (X t )Tt=1, we will use the following notation

X t =

t∏
τ=1

Xτ X =

T∏
τ=1

Xτ

with elements xt ∈ X t and x ∈ X . Finally, a stochastic map α : X → Δ(Y ) is said to be

adapted if the marginal probability of the first t terms of y depends only on the first t terms of

x; formally, it is adapted if the function

∑︁
yt+1,...,yT

α(y1, . . . , yt , yt+1, . . . yT |x1, . . . , x t , x t+1, . . . , xT )

is constant in x t+1, . . . , xT .

2.2 The model

The formal objective is to characterize the empirical content of the joint hypothesis of (Bayesian)

rationality and the specific payoff function, but without any hypothesis on the information

structure. With that objective in mind, we introduce the formal model. The decision problem

is shown in Figure 1.

In each time period t , the agent chooses an action at from a finite set At . Payoffs are deter-

mined after period T by a utility function u (a, ω), which depends on the entire action sequence

a = (a1, . . . , aT ) ∈ A and a potentially unknown state of the world ω drawn from a finite set Ω.
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Information

π : Ω→∆(S1×·· ·×ST )

Nature
draws ω

Agentsees s1

Agent
chooses a1

Agentsees s2

Agent
chooses a2

Agent gets
u(a,ω)

Henrique de Oliveira and Rohit Lamba Rationalizing Dynamic Choices

Figure 1: The timeline of signals and actions

There are no other restrictions on the utility function.

The agent is informed about the underlying state of the world over time through a sequence

of signals. The timeline of the dynamic decision problem is expressed in Figure 1. Every period,

before taking an action, the agent observes a signal that is (potentially) correlated with the state

of the world and with the signals she has observed in the past. Formally, the sequence of signals

is generated by a sequential information structure:

Definition 1. A sequential information structure is a sequence of finite sets of signals (St )Tt=1
and a stochastic mapping π : Ω → Δ (S).5

We will often refer to the sequential information structure simply as π; the set of signals

shall be implicit. The agent’s strategy maps each sequence of signals into a lottery over actions

every period, with the restriction that the agent cannot base the choice of an action on signals

that have not yet been revealed, which we call adaptedness.

Definition 2. A strategy for the agent is an adapted stochastic mapping σ : S → Δ (A).6

Given the sequential information structure π and agent’s strategy σ, the probability that

the agent takes a given sequence of actions in each state of the world ω is given by σ ◦ π (a|ω).

Finally, given a prior p ∈ Δ(Ω), she can evaluate her expected payoff:

U
(
σ, π, p

)
=
∑︁
ω∈Ω

p (ω)
∑︁
a∈A
σ ◦ π (a|ω) u (a, ω).

The agent’s problem then is to choose an optimal σ given π and p. Throughout the paper, we

refer to this model of decision making as the Bayesian model.

Our goal is to characterize the empirical content of this model. To that end, we say that an

5We can equivalently define the sequential information structure period-by-period as follows. Let π = (πt )Tt=1 be
a family of stochastic mappings where π1 : Ω → Δ(S1), and πt : Ω × S t−1 → Δ(St ) ∀ 2 ≤ t ≤ T . Except for zero
probability events, we can deduce that the two definitions are equivalent. The minor distinction does not affect the
agent’s utility and is therefore irrelevant for our results. For a proof, see Lemma 3 in de Oliveira [2018].

6As with information structures, an equivalent way to think of the agent’s strategy is a family of stochastic
mappings σ = (σt )Tt=1, where σ1 : S1 → Δ(A1), and σt : S t × At−1 → Δ(At ) ∀ 2 ≤ t ≤ T . It is possible to deduce
one formulation from the other.
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action sequence can be rationalized if it can be chosen with positive probability by an optimizing

agent with some information structure and some prior.

Definition 3. An action sequence a ∈ A can be rationalized if there exists a triplet
(
σ, π, p

)
such

that:

1. σ ∈ argmax
σ̂

U (σ̂, π, p) and

2. σ ◦ π ◦ p (a) > 0.7

This definition is permissive in the sense that an action sequence is considered rationalized

even if its probability is very small, as long as it is positive. To deduce that an action sequence

cannot be rationalized, the analyst needs to work through all possible pairs (π, p), and show that

the corresponding optimal strategy σ will not pick that action sequence with positive probabil-

ity. Since the set of all sequential information structures is quite large, this poses a challenge.

The main goal of de Oliveira and Lamba [2025] was to find an alternative way to characterize

the set of action sequences that cannot be rationalized, which we now briefly summarize.

3 Rationalizing dynamic choices: a tight characterization

3.1 Deviation rules and true dominance

A deviation rule is an adapted mapping D : A → Δ(A), where recollect that being adapted

means that the marginal distribution on At , the (potentially random) deviation strategy for the

first t periods, depends only on At , the first t elements of the original strategy from which the

agent is deviating. We can think of the deviation rule as a list of alternative actions the agent

would take as a function of the actions she originally intended to take. Importantly, a deviation

rule is a fully prescribed plan, so if σ is the original strategy, then D ◦σ (a|s) is also a well-defined

strategy.

Now, we are in a position to define the appropriate notion of dominance for our model.

Definition 4. A deviation rule D : A → Δ (A) dominates an action sequence a if

1. u (D (a) , ω) > u (a, ω) for all ω ∈ Ω.

2. u
(
D

(
b
)
, ω

)
⩾ u

(
b, ω

)
for all b ∈ A and ω ∈ Ω.

We say that a is truly dominated if there exists a deviation rule that dominates it.
7Here σ ◦ π ◦ p (a) = ∑

ω
σ ◦ π (a|ω) p (ω) (see Section 2.1).
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The first part of the definition requires that the action sequence that is to be dominated be

strictly improved upon. The second part requires that the payoff induced by the deviation rule

do not become worse for any other action sequence in any state. Moreover, there’s no visible

time dimension in the definition above; time is implicit in the condition that D must be adapted.

For T = 1, the same definition applies, but the condition that D is adapted becomes vacuous,

and so does the second part of the definition. In that case, if a is strictly dominated by α, we

can define a deviation rule Dα that takes a to α and does not change any other actions. Dα then

dominates a according to the definition above.

WhenT > 1, the adaptedness restriction prevents the construction of such a simple deviation

rule—if D specifies a change for the first action in the sequence a, then it must specify the same

change for all sequences b that share the same first action, and so on. The second condition

and the embedded notion of adaptedness in the definition impose meaningful restrictions when

T > 1, encapsulating the distinction between true and apparent dominance.

2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

(a) Not adapted

2,−2

invest

−1,−1

pull back

invest

0, 0

not invest

(b) Does not always improve

5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

(c) Not adapted

5δ, 3δ

x

3δ, 5δ

y

w

5, 3

x

3, 5

y

(d) Does not always improve

Figure 2: Deviation rules for Examples 1 and 2

To better grasp the definitions of deviation rule and true dominance, Figure 2 illustrates

the concepts in the context of our examples. Each complete sequence of actions corresponds

to a terminal node. Thus, any mapping from sequences of actions into sequences of actions is
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depicted as arrows between terminal nodes. It is instructive to note which deviation rules are

and which are not adapted, and when the simple adapted ones do not improve upon the intended

action sequences.

For instance, in thewaiting example, the “deviation rule” depicted in Figure 2c is not adapted,

since it represents the infeasible advice “whatever youwould choose in the second period, choose

the same in the first period”. The deviation rule in Figure 2d represents the advice “if you were

thinking about waiting, choose x instead”, which is adapted. When δ < 3
5 , it dominates wx

and wy, but when δ > 3
5 it does not dominate wx nor wy, because x may give a strictly lower

payoff than wy. For the tightest possible statement, we therefore constructed the deviation rule

wx ↦→ 1
2 x +

1
2y, wy ↦→ 1

2 x +
1
2y, x ↦→ y and y ↦→ y which (simultaneously) truly dominates wx

and wy if and only if δ < 4
5 .

3.2 Reviewing the characterization result

The main result from de Oliveira and Lamba [2025] is as follows.

Theorem 1. A sequence of actions cannot be rationalized if and only if it is truly dominated.

The theorem provides a tight characterization of the set of action sequences that cannot be

rationalized. Through its duality formulation, it simplifies their identification by requiring the

analyst to construct one deviation rule as opposed to treading through the family of all sequential

information structures.

Now, the set of mappings from all possible action sequences to all possible action sequences

can be quite large, even when restricted by adaptedness. Often, the “salient" or “binding" devia-

tion rule is intuitive. But it is also useful to have a systematic way to reduce the set of deviation

rules that the analyst may need to look at. In the following main result of this paper, we provide

one such method of reducing the set of deviation rules by removing some clearly bad candidates.

4 The main result: Simple deviations

Is there a systematic way to rule out poor candidate deviation rules? Intuitively speaking, if a is

truly dominated, it seems futile to recommend deviating to the tree which contains a. Moreover,

it also seems unnecessary to form chains of deviations: if it makes sense to deviate towards

some action sequence b, then perhaps it also makes sense not to deviate away from it. Here we

formalize these intuitions by thinking of a deviation rule as a Markov chain. Recollect that for
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D (b) ∈ Δ(A), we refer to D
(
a|b

)
∈ [0, 1] as the weight put on a by the probability distribution

D (b).

Definition 5. Given a deviation rule D, we say that

1. a is repulsive if D
(
a|b

)
= 0 for all b ∈ A;

2. a is absorbing if D (a|a) = 1.

The term absorbing is directly borrowed from the Markov chains taxonomy, and the notion

of repulsiveness is closely related to the idea of accessibility. In Markov chains, we say a “state” a

is accessible from state b in n steps if Dn (
a|b

)
> 0, where Dn represents the application of the

deviation rule n times. The “state” a is then said to be inaccessible from b if Dn (
a|b

)
= 0 for all

n. It is easy to see that a is repulsive if and only if it is inaccessible from all other “states” b. We

can now operationalize this terminology to prune the decision tree of truly dominated action

sequences.

Definition 6. A deviation rule D removes (a1, . . . , at ) if

1. b is repulsive whenever
(
b1, . . . , bt

)
= (a1, . . . , at ), and

2. b is absorbing whenever
(
b1, . . . , bt

)
≠ (a1, . . . , at ).

Theorem 2. If a = (a1, . . . , aT ) is a truly dominated action sequence, then there exists a deviation

rule D that dominates a and removes (a1, . . . , at ) for some t ⩾ 1.

As a thought experiment, let us apply this result to Example 1 in the introduction. Suppose

we are trying to show that (invest, pull back) is truly dominated. There are a total of 15 pure

decision rules to consider and, in principle, we would need to look for a dominating deviation

rule among all their mixtures.8 Using the theorem above, we can simplify this search dramati-

cally. First, suppose that D removes a1 = invest. There is a single deviation rule that does that,

namely the one that always deviates to not invest (see Figure 3a). Now, suppose that D removes

(a1, a2)=(invest, pull back). Then (invest, invest) will be absorbing, and by adaptedness it is the

only candidate for a deviation from (invest, pull back). Therefore, we again have a single candi-

date for D , namely the one that recommends deviating from (invest, pull back) to (invest, invest)

and does not recommend any other deviation (see Figure 3b). Thus, the theorem tells us that

we only have to consider two deviations.
8There are 3 action sequences so a total of 27 possible (pure) deviation mappings, but not all of them are adapted.

It can be checked that exactly 15 combinations are possible for mappings that are adapted.
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invest pull back

invest not invest

(a)

invest pull back

invest not invest

(b)

Figure 3: Relevant deviations for the investment example

5 Relevant deviation rules in simple stopping problems

We now apply our result to a class of simple stopping problems: In each period, the agent has two

possible actions: “stop” and “continue”. If the agent stops, the decision tree ends, and the payoff

is realized. The decision problem has T periods, so in the final period the tree ends either way.

As before, there is an underlying state of the world that can take on at least two values.

The following proposition shows the total number of deviation rules in a stopping problem.

Proposition 1. The number of pure deviation rules in a T -period stopping problem is

F (T ) =
T∑︁
k=0

(T + 1)!
k!

.

Proof. We prove this by induction. For T = 1, it is easy to see that there are 4 deviation rules,

and we have

F (1) = 2!
0!

+ 2!
1!

= 4.

Now suppose that we have proven the formula for T −1. First, we consider all the deviation

rules that deviate from “continue” to “stop” in the first period. The only question then is where

we deviate from “stop” in the first period to. There are T + 1 possible deviations (stopping in

each of the T periods or always continuing).

Now we consider deviation rules that do not deviate from “continue” in the first period.

There are, as before, T + 1 ways of deviating from “stop” in the first period, and for each of

those, we have F (T − 1) ways of continuing deviating for the other sequences. This proves the
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formula

F (T ) = T + 1 + (T + 1)F (T − 1).

Substituting our formula for T − 1, we get

F (T ) = (T + 1) + (T + 1)∑T −1
k=0

T !
k!

=
(T +1) !
T ! +∑T −1

k=0
(T +1) !

k!

=
∑T

k=0
(T +1) !

k! .

□

Now let us consider a particular action sequence a in this problem. We have the sequence that

always continues, and all others involve continuing a certain number of times, then stopping.

Let’s analyze how many deviation rules are necessary to check that the sequence that always

continues is truly dominated. To do that, we prove the following:

Proposition 2. In the stopping problem, let a be the sequence that always continues. For each t , there

is only one deviation rule (other than the identity) that removes the sequence (a1, . . . , at ).

Proof. By definition, if the deviation rule removes (a1, . . . , at ), then it must be absorbing for

every b with (b1, . . . , bt ) ≠ (a1, . . . , at ). Thus any sequence that stops before period t must be

unaffected by the deviation rule. This also means that any sequence that starts with (a1, . . . , at )

cannot be taken to a sequence that stops before period t , otherwise adaptedness would mean

there is a b that contradicts our previous statement.

We must also have that b is repulsive whenever (b1, . . . , bt ) = (a1, . . . , at ), meaning that

a sequence that does not stop in the first t periods has to be taken to the sequence that stops

exactly at period t . Thus, we are left with only one deviation rule that removes (a1, . . . , at ). □

This immediately implies that for each period t , we have only one deviation rule to consider,

totaling T deviation rules to consider.

6 Another potential approach: Backward induction

It is tempting to frame the solution to our problem in a recursive or inductive form. Here we

show that a natural backward inductive approach can be useful in thinking about true domi-

nance, and that eventually our notion of deviation rules subsumes the inductive construction.
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The following simple result shows how we can derive conclusions about a decision problem by

looking at particular subproblems.

Proposition 3 (Informal). If (at+1, . . . , aT ) is truly dominated in the subproblem obtained by fixing

(a1, . . . , at ), then (a1, . . . , aT ) is truly dominated in the original problem.

Proposition 3 gives a method of finding truly dominated sequences by backward induction.

We first fix (a1, . . . , aT −1) and then find which actions aT are truly dominated in the single-

period problem that follows.9 Let ÃT be the last period actions that survived (that is, can be

rationalized), and now fixing (a1, . . . , aT −2) we find which sequences (aT −1, aT ) ∈ AT −1 × ÃT

are truly dominated in this two-period problem, and so on. This exercise helps the analyst

in two ways. First, it directly simplifies her search for the set of action sequences that cannot

be rationalized, and second, as we will prove in the next subsection, it informs her that the

construction of deviation rules for other action sequences should not take these truly dominated

action sequences in their support. For example, if action sequence if the (aT −1, aT ) is truly

dominated in the subproblem, the analyst immediately knows that whole action sequence a is

truly dominated in the original problem, and moreover, that in order to construct a deviation

rule for any other action sequence b that may be truly dominated, the associated deviation rule

does not have to put any weight on a.

There are, however, two caveats to making backward induction the primary approach in

solving our problem. First, in its final stages the method described above can be almost as com-

plex as the original problem. Second, a naive application of it might lead to mis-identification

of the set of action sequences that can be rationalized, as the following conjecture exposits:

Conjecture 1. Suppose that (i) the sequence of actions (a1, . . . , at ) can be chosen with positive prob-

ability, and (ii) (at+1, . . . , aT ) can be rationalized in the subproblem obtained by fixing (a1, . . . , at ).

Then, (a1, . . . , aT ) can be rationalized.

This conjecture is false; the decision tree in Figure 4 is a simple counterexample. Both L

and R can be chosen in the first period, and in the decision following action L, both l and r

can be chosen. This could lead the analyst to believe that (L, r ) can be rationalized. However,

the deviation rule depicted in the figure shows otherwise. The problem with naive inductive

reasoning is that a choice of L can only be rationalized if the agent is sure about the state being

the first one; choosing r would then require an inconsistent belief. Such indifference in payoffs

9Since this is a “static" problem, it is the same as looking for actions which are strictly dominated by some other
action.
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(both (L, l ) and (R, r ) yield 3 in the first state), requires a comparison of the full sequence of

actions. Thus, in general, it is apt to define true dominance along the entire sequence of actions

and employ the induction argument to construct simple deviation rules whenever possible.

3, 0

l

1, 1

r

L

2, 2

l

3, 1

r

R

Figure 4: Counter example to naive reasoning in Conjecture 1—the deviation rule shown is
adapted and improves upon Lr

7 Final remarks

We conjecture that further improvements can be made in ruling out bad candidate deviation

rules and reducing the set to search over even more dramatically. Note, for instance, that

nowhere in the description of the problem in Section 4 or in the statement of Theorem 2 did we

use payoffs; only the structure of the decision tree has been invoked. It is clear that for specific

trees with systematic payoff structures, more precise statements can be made about reducing the

complexity of the search for potentially binding deviation rules.

In de Oliveira and Lamba [2025], analogous to Theorem 1 above, we also provide a similar

characterization result for rationalizing distributions over action sequences, and further describe

how the search for deviation rules can be reduced to a simple linear program. A similar reduc-

tion in the set of potentially deviation rules (as Theorem 2 above) for the case of rationalizing

distributions., is an interesting open question.

8 Proofs

8.0.1 Simple deviations

We will need a few lemmata before proving Proposition 2. The proof is by induction, and the

first lemma is a version of Proposition 2 involving only the first period action.
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Lemma 1. If a = (a1, . . . , aT ) is a truly dominated action sequence, then there exists a deviation

rule D that dominates a, satisfying D
(
b
)
= I

(
b
)
whenever b1 ≠ a1.

Proof. The argument here is similar to the proof of Proposition 3. Let F be a deviation rule that

dominates a and let

D
(
b
)
=


F
(
b
)

when b1 = a1

I
(
b
)

when b1 ≠ a1
.

It is easy to check that D is also adapted and dominates a. To show adaptedness, we can show,

as in Proposition 3, that

∑︁
c2,...,cT

D
(
c|b

)
=


∑

c2,...,cT F
(
c|b

)
if b1 = a1∑

c2,...,cT I
(
c|b

)
if b1 ≠ a1

so adaptedness of D follows from adaptedness of F and I . To see that D dominates a, notice

that

u
(
D

(
b
)
, ω

)
=


u
(
F
(
b
)
, ω

)
when b1 = a1

u
(
b, ω

)
when b1 ≠ a1

.

□

The key idea behind the lemmata that follow is to regard a deviation rule as the transition

probabilities of a Markov chain, with the set of action sequences A as the set of “markov states"

(not to be confused with the “states of nature", ω ∈ Ω). We can then label action sequences

according to their properties as markov states:

Definition 7. Let D be a deviation rule. We say that an action sequence a ∈ A is

1. recurrent if, starting from a, the probability of eventually returning to a is one;

2. transient if, starting from a, the probability of eventually returning to a is less than one;

3. absorbing if D (a|a) = 1;

4. repulsive if, for every b ∈ A, D (a|b) = 0.

Note that absorbing implies recurrent and repulsive implies transient, but the converse in

each case is not true. This is standard terminology for Markov chains, with the exception of the

definition of “repulsive" (see Kemeny, Snell, and Knapp [1976]). The idea that follows relates

payoff dominance of action sequences to their properties as Markov states. The intuition here

15



is that if D dominates a then it must have a tendency to move the agent away from a, so that a

will be transient.

Lemma 2. Let D be a deviation rule that dominates a. Then a is a transient state for D.

Proof. If a is a recurrent state, then there exists a stationary probability α ∈ Δ (A) such that

D ◦ α = α and α (a) > 0 (Theorem 6.9 in Kemeny, Snell, and Knapp [1976]). Now define

a distribution γ ∈ Δ (A ×Ω) by γ
(
b, ω

)
= α

(
b
)
p (ω), where p ∈ Δ (Ω) is arbitrary. Then

γ (a) > 0 and Eγ
[
u
(
D

(
b
)
, ω

) ]
= Eγ

[
u
(
b, ω

) ]
, which contradicts the fact that D dominates

a. □

The following fundamental construction is what allows us to turn transient action sequences

to the stronger property of being repulsive. Here we use the notation Dk to mean the compo-

sition of D with itself k times.

Lemma 3. Let D be any deviation rule. Then

D∞ (
c|b

)
= lim

n

1
n

n∑︁
k=1

Dk (c|b)
is a well defined deviation rule. Moreover,

1. D∞ = D ◦ D∞ = D∞ ◦ D = D∞ ◦ D∞

2. If b is dominated by D, then it is also dominated by D∞;

3. If b is transient for D, then it is repulsive for D∞;

4. If b is absorbing for D, then it is also absorbing for D∞

Proof. The proof that the limit exists and of (1) follows that of the Ergodic Theorem forMarkov

Chains, (see Theorem 6.1 in Kemeny, Snell, and Knapp [1976]). The proof of (4) follows

straightforwardly, by construction. Here we prove parts (2) and (3).

If D dominates a, then for every b ∈ A and ω ∈ Ω,

u
(
Dk (b) , ω) =

∑︁
c

u (D (c) , ω) Dk−1 (c|b)
⩾

∑︁
c

u (c, ω) Dk−1 (c|b)
...

⩾ u
(
D

(
b
)
, ω

)
16



This shows that Dk dominates a as well. Combining the inequalities for different k and taking

the limit, we conclude that u
(
D∞ (

b
)
, ω

)
⩾ u

(
D

(
b
)
, ω

)
as well, so D∞ dominates a.

To prove (3), suppose b is transient. We must show that D∞(b|a) = 0 for all a ∈ A. If

a is recurrent, then we must have Dk (b|a) = 0 for all k, otherwise b would be recurrent as

well (see Lemma 4.23 in Kemeny, Snell, and Knapp [1976]). If a is transient, then we have that

limk Dk (b|a) = 0 (by Proposition 5.3 in Kemeny, Snell, and Knapp [1976]). Hence, in either

case, we have that D∞ (
b|a

)
= 0, so b is repulsive for D∞. □

A given deviation rule D induces a deviation rule up to each period t , which we will denote

by Dt . That is,

Dt
(
c1, . . . , ct |b1, . . . , bt

)
=

∑︁
ct+1,...,cT

D
(
c1, . . . , cT |b1, . . . , bT

)
where bt+1, . . . , bT can be chosen arbitrarily, since D is adapted.

Lemma 4. If D
(
b
)
= I

(
b
)
whenever b1 ≠ a1 and D1 (a1 |a1) < 1, then D∞

1 (a1 |a1) = 0.

Proof. Let λ = D1 (a1 |a1) < 1 and notice that

D2
1 (a1 |a1) =

∑︁
b1

D1
(
a1 |b1

)
D1

(
b1 |a1

)
= D1 (a1 |a1) D1 (a1 |a1)

since D1
(
a1 |b1

)
= 0 whenever b1 ≠ a1. From this, we deduce that Dk

1 (a1 |a1) = λ
k . Hence

D∞
1 (a1 |a1) = lim

n

1
n

n−1∑︁
k=0

Dk
1 (a1 |a1) = lim

n

1
n

(
1 − λn
1 − λ

)
= 0.

□

Proof of Proposition 2. Suppose a = (a1, . . . , aT ) is truly dominated. We want to show that there

exists a deviation rule D that dominates a and there exists a t such that D removes (a1, . . . , at ).

We proceed by induction onT . The idea is that starting from a deviation rule D that dominates

a, we will show that D∞ removes (a1, . . . , at ) for some t .

Let T = 1. Then, obviously there exists a deviation rule D such that D
(
b1
)
= I

(
b1
)

whenever b1 ≠ a1 and D (a1 |a1) < 1. Thus from Lemma 4, we have D∞
1 (a1 |a1) = 0.

Next, suppose that result holds for T − 1 where T ≥ 2. We want to show that it is true for

T . Using Lemma 1, let D dominate a such that D
(
b
)
= I

(
b
)
whenever b1 ≠ a1. Now there are

two possible cases to consider: D1 (a1 |a1) < 1 and D1 (a1 |a1) = 1.

17



If D1 (a1 |a1) < 1, then from Lemma 4 we know that D∞
1 (a1 |a1) = 0, and thus D∞ (

b|a
)
= 0

for b1 = a1. Moreover, recollect from Lemma 3 part (4), we know that D∞ (
b
)
= I

(
b
)
for

b1 ≠ a1. Therefore, we can conclude that D∞ removes a1.

Now, suppose D1 (a1 |a1) = 1, which means that the deviation rule D takes every sequence

starting with a1 to another sequence starting with a1. Therefore, it naturally defines a deviation

rule for the subproblem that fixes a1. Further, it is easy to see that the induced deviation rule

shows (a2, . . . , aT ) to be truly dominated in the subproblem (just reverse the construction in

the proof of Proposition 3).

Note that the subproblem is of length T − 1, so using the induction hypothesis, we know

that there exists a deviation rule F and a t such that F dominates (a2, . . . , aT ) and F removes

(a2, . . . , at ). Thus, in original problem the deviation rule G, defined by G
(
b
)
= I

(
b
)
when-

ever b1 ≠ a1, and G
(
c|b

)
= F

(
c2, . . . , cT |b2, . . . , bT

)
if b1 = a1, dominates a and removes

(a1, . . . , at ). □

8.0.2 Backward induction

When stating Proposition 3, we informally referred to a “subproblem". We begin by defining

this concept precisely.

Definition 8. We refer to the collection of action sets A1, . . . ,AT , together with the utility function

u : A×Ω → R, as the agent’s decision problem.The subproblem obtained by fixing (a1, . . . , at ) is

the subcollection of action sets At+1, . . . ,AT , together with the utility function v : At+1 × · · · ×AT ×

Ω → R defined by

v (at+1, . . . , aT , ω) = u (a1, . . . , at , at+1, . . . , aT , ω) .

Thus, a sequence (at+1, . . . , aT ) is truly dominated in the subproblem if there exists a devi-

ation rule D : At+1 × · · · × AT → Δ (At+1 × · · · × AT ) such that

v (D (at+1, . . . , aT ), ω) > v (at+1, . . . , aT , ω) for all ω ∈ Ω and

v
(
D (bt+1, . . . , bT ), ω

)
⩾ v

(
bt+1, . . . , bT , ω

)
for all bt+1 ∈ At+1, . . . , bT ∈ AT , ω ∈ Ω.

Proof of Proposition 3 . Here we will use the following notation: given b =
(
b1, . . . , bT

)
, we will

let b
��
t =

(
b1, . . . , bt

)
.

Let D : At+1 × · · · × AT → Δ (At+1 × · · · × AT ) be a deviation rule for the subproblem such
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that D dominates (at+1, . . . , aT ). Then we can define F : A → Δ (A) to recommend the same

deviations as D in the subproblem, and recommend no deviations elsewhere. Formally,

F
(
c|b

)
=


D

(
ct+1, . . . , cT |bt+1, . . . , bT

)
if b

��
t = a|t = c|t

I
(
c|b

)
otherwise

where I is the identity (= 1 if c = b, and zero otherwise). Also, recall that for a stochastic

mapping, F
(
c|b

)
is the probability that F (b) ∈ Δ(A) puts on the action sequence c. Now, we

claim that F is adapted and also dominates a. To show that F is adapted, we must show that∑
c s+1,...,cT F

(
c|b

)
does not depend on

(
bs+1, . . . , bT

)
. We show this separately for s ⩾ t and s < t .

So fix b =
(
b1, . . . , bT

)
and c| s = (c1, . . . , c s ) and suppose s ⩾ t . Then b

��
t and c|t are uniquely

determined, and every term in the sum for F is given by D or every term in the sum is given by

I . Hence we have

∑︁
c s+1,...,cT

F
(
c|b

)
=


∑

c s+1,...,cT D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
if b

��
t = a|t = c|t∑

c s+1,...,cT I
(
c|b

)
otherwise

In either of those cases, the sum on the right does not depend on
(
bs+1, . . . , bT

)
, since both D

and I are adapted.

Now suppose s < t . If c| s ≠ a| s or b
��
t ≠ a|t , then we already know that F

(
c|b

)
= I

(
c|b

)
,

so again
∑

c s+1,...,cT F
(
c|b

)
=
∑

c s+1,...,cT I
(
c|b

)
does not depend on

(
bs+1, . . . , bT

)
. But if c| s = a| s

and b
��
t = a|t , some terms of the sum have c|t = a|t and others have c|t ≠ a|t . In that case, we

can write

∑︁
c s+1,...,cT

F
(
c|b

)
=

∑︁
{c:c | t=a | t }

D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
+

∑︁
{c:c | t≠a | t }

I
(
c|b

)
=

∑︁
ct+1,...,cT

D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
+

∑︁
{c |c | t≠a | t }

I (c|a)

= 1 + 0

=
∑︁

c s+1,...,cT

I
(
c|b

)
.

For the third equality, the first term is 1 because we are summing over the entire support of that

distribution, and the second term is zero because when c|t ≠ a|t the identity map gives a value

of zero. So we have shown that, whenever s < t , we have
∑

c s+1,...,cT F
(
c|b

)
=
∑

c s+1,...,cT I
(
c|b

)
.

19



Summarizing all cases, we have shown

∑︁
c s+1,...,cT

F
(
c|b

)
=


∑

c s+1,...,cT D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
if s ⩾ t and b

��
t = a|t = c|t∑

c s+1,...,cT I
(
c|b

)
otherwise.

In either case, the sum on the right-hand side does not depend on
(
bs+1, . . . , bT

)
, since D and I

are adapted. Hence, F is adapted as well.

To see that F dominates a, notice that u
(
F
(
b
)
, ω

)
= u

(
I
(
b
)
, ω

)
= u

(
b, ω

)
if b

��
t ≠ a|t .

When b
��
t = a|t , we have that u

(
F
(
b
)
, ω

)
⩾ u

(
b, ω

)
for all b and with strict inequality for

b = a, since there F recommends the same deviation as D . □
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