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Abstract

We consider an agent with a rationally inattentive preference over menus of acts, as in De Oliveira et al.

(2017). We show that two axioms, Independence of Irrelevant Alternatives and Ignorance Equivalence,

are necessary and sufficient for this agent to have a posterior-separable cost satisfying a mild smoothness

condition, called joint-directional differentiability. Viewing the decision-maker’s problem as a bayesian

persuasion problem, we also show that these axioms are necessary and sufficient for solvability by a

unique hyperplane. When the cost function remains invariant for different priors, we show that these

axioms imply uniformly posterior separable costs that are differentiable.

1 Introduction

In many economic settings, a decision maker (DM) must acquire information before making a choice. This

information may be costly, as it is difficult to acquire more precise information, while at the same time may

allow for flexibility in the information chosen by focusing on different aspects of the problem. To this end,

the rational inattention literature has focused to a large extent on posterior separable costs of information,

where the cost of an experiment π is given by

c(π) =

∫
ψ(p)dπ(p)

for some convex function. This representation allows for analyzing such problems in a tractable manner,

using information design tools to solve for the problem, while guaranteeing that more information is always

more costly in the Blackwell order (Blackwell, 1951). This paper aims to axiomatize preferences over menus

that can be represented as coming from such costs.

There is already an existing literature on the representation of information costs based on individual

preferences. Most directly connected is De Oliveira et al. (2017), which axiomatize preferences over menus

that can be expressed as deriving from a DM who first acquires information, and then makes a choice from

the menu that maximizes expected utility. This, in turn, is part of a more general approach of modeling

∗This paper partially subsumes results from de Oliveira (2014), in which our two main axioms originally appear along with
a partial characterization of the information costs that are consistent with them. We would like to thank Tommaso Denti for
some helpful comments and suggestions, as well as seminar participants at SAET 2025.
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“costly contemplation” (Ergin and Sarver, 2010). Our work builds on these by providing axioms under which

the representation in the former is posterior separable.

Separately, there is a literature on identifying whether a finite dataset is consistent with costly informa-

tion acquisition through revealed preference. Caplin and Dean (2015) provide such a characterization for

additively separable information costs, while Denti (2022) provides a characterization for posterior separable

costs. Other papers, such as Caplin, Dean, and Leahy (2022) and Mensch and Malik (2024) characterize

more specific forms of posterior-separable costs. These papers take as given a finite dataset, and check that

for consistency with these respective theories via an acyclicality condition. By contrast, our paper takes

preferences as given, and attempts to find a representation based on these.

Posterior-separable costs have found widespread application in the literature due to their ease of analysis.

Under the hypothesis of expected utility, one can write the indirect utility as a convex function ϕ(p) of the

posterior belief. As a result, the net objective of the DM at a given posterior is

N(p) := ϕ(p)− ψ(p)

and so the DM’s overall objective is linear in π. This allows for the use of concavification (Aumann and

Maschler, 1995; Kamenica and Gentzkow, 2011) to solve for the optimal distribution, whereby the DM can

achieve a value equal to the smallest concave function lying above N by choosing an appropriate distribution

of posteriors. This appealing structure of the solution has led to its widespread use in applications in

models with rationally inattentive agents. Some such work include Lipnowski, Mathevet, and Wei (2020),

Yang (2020), Mensch (2022), Yoder (2022), Gleyze and Pernoud (2023), and Hébert and La’O (2023). In

addition, more specific costs functions within this class have been developed, such as entropy costs (Sims,

2003; Matějka and McKay, 2015), neighborhood-based costs (Hébert and Woodford, 2021), and log-likelihood

costs (Pomatto, Strack, and Tamuz, 2023). For a more extensive discussion of this class of functions, see

Denti (2022).

Our result relies on two key axioms to tighten the representation of De Oliveira et al. (2017). The first

axiom, Independence of Irrelevant Alternatives, states that if the DM is indifferent between two menus F,G

as well as their intersection, then the DM is also indifferent to their union. The idea is that the preferences

indicate that the options outside of the intersection are not useful, and so the DM does not benefit from the

added flexibility. Thus, they remain without benefit when considering the union.

The second axiom, Ignorance Equivalence1, states that for each menu, there is an act that the DM is

indifferent to, including under union with the menu. This act provides an “ignorance equivalent” (Müller-

Itten, Armenter, and Stangebye, 2023) to the menu. When this act is added to the menu, the agent is

indifferent between acquiring information optimally for the menu, or not acquiring any information and

simply choosing the act. Thus, the extra flexibility afforded by adding the act does not increase the menu’s

value. As Müller-Itten, Armenter, and Stangebye (2023) explain, the ignorance equivalent can be viewed as

an analogue of a certainty equivalent for menus.

Together, these capture the idea that the optimal choice of the information by the DM, given that they

are rationally inattentive, can be expressed via a unique hyperplane in the payoff-probability space. This

hyperplane will be tangent to the payoff function at the optimal points of the information choice, and lie above

the other points. Thus, the hyperplane is the unique optimal concavification of the DM’s objective, given a

posterior-separable objective. This “unique hyperplane” property holds if and only if the cost of information

1This axiom was called “Linearity” in de Oliveira (2014).
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is both posterior separable and satisfies a property that we call “joint directional differentiability.” We discuss

the role of each axiom in the development of this conceptualization in Section 5.

The presence of a unique hyperplane is a common but underappreciated feature of the most commonly

used posterior-separable cost functions, including the above-cited literature. Moreover, the set of such cost

functions is dense with the set of posterior separable costs, and is satisfied whenever the cost function is

differentiable (as is the case for almost all commonly used functions, such as entropy, log-likelihood, residual

variance, and neighborhood-based costs). As we show in Section 6, when considering uniformly posterior-

separable costs, our two axioms yield a differentiable cost representation.

This property is useful for solving rational inattention problems, as whenever the cost function is differ-

entiable over all feasible distributions, one uses a first-order condition on the cost function to pin down the

unique optimal hyperplane. The optimal hyperplane, in turn, indicates which posteriors can be chosen for

each action from a given menu (see Caplin, Dean, and Leahy (2022), Lemma 1, which they refer to as the

“Lagrangian lemma”). As the optimal choice of information is upper-hemicontinuous in the payoffs from the

menu, the unique hyperplane property means that the Lagrange multiplier that defines the optimal choice

of information will react continuously to perturbations of the menu. The well-behaved nature of information

choice, given the unique hyperplane property, greatly simplifies the analysis of the DM’s problem.

2 Model

Let Ω denote a finite set of states of the world and let X be a mixture space of consequences2. An act is a

function f : Ω → X. A finite set of acts will be called a menu and denoted by F,G,H etc. The set of all

acts is denoted by F and the set of all menus by F. A single act f can also be seen as a singleton menu {f};
we usually omit the brackets if there is no chance for confusion.

Mixtures of acts are defined pointwise: given two acts f, g and a scalar α ∈ [0, 1], denote by αf+(1− α) g

the act that in each state ω delivers the outcome αf (ω) + (1− α) g (ω). For α ∈ [0, 1], the mixture of two

menus is defined as

αF + (1− α)G = {αf + (1− α) g : f ∈ F, g ∈ G} .

We can interpret αF + (1− α)G as a lottery over what menu the agent faces.

Given an arbitrary set Z we let ∆(Z) denote the set of probability distributions over Z with finite support.

2.1 Rationally Inattentive Preferences

The primitive is a preference ≿ defined over menus, which is interpreted according to the following timeline.

choose
menu

allocate
attention

observe
signal

choose
act

Thus, the agent chooses among menus while aware that they will be able to obtain information before

finally choosing an act. We consider an agent who is rationally inattentive, that is, whose preferences can

be represented by

V (ϕF ) = max
π∈Π(p0)

∫
ϕF (p)π(dp)− c(π),

2For example, X could be the set of lotteries over a fixed set of prizes, or it could be a convex subset of some vector space.
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where

Π(p0) =

{
π ∈ ∆(∆(Ω))

∣∣∣ ∫ p(ω)π(dp) = p0(ω)∀ω ∈ Ω

}
represents distributions over posterior beliefs consistent with possible finite information structures, c :

Π(p0) → R ∪ {∞} is the cost of information3, and

ϕF (p) = max
f∈F

∑
ω

u(f(ω))p(ω),

where u : X → R is the utility function over consequences. We assume that the image of u is R.
Note that, in the representation above, the consequence associated with an act in a given state only

matters insofar as it affects the utility. Thus, we may consider as shorthand, instead of acts f : Ω → X,

utility acts given by u ◦ f : Ω → R. We may also work with utility menus—finite sets of utility acts. For

instance, when we refer to the menu F = {0}, we mean a utility menu that contains a single utility act

0 ∈ RΩ or, equivalently, any menu that has a single act giving utility zero in every state.

The following result is proved in De Oliveira et al. (2017):

Proposition 1 (De Oliveira et al. (2017), Theorems 1 & 2). Let ≿ be a rationally inattentive preference.

Then ≿ has a representation (u, p0, c) where the cost function c : Π(p0) → R ∪ {∞} is canonical, i.e. it

satisfies

Groundedness c(δp0) = 0,

Convexity c is a convex function, and

Blackwell-monotonicity c is increasing in the Blackwell order.

Moreover, this cost function can be recovered from the functional V by the formula

c(π) = sup
F∈F

∫
ϕF (p)π(dp)− V (ϕF ).

Moreover, the following is a useful characterization of canonical costs, slightly modified from Denti,

Marinacci, and Rustichini (2021), Lemma 6:

Proposition 2. A cost function c : Π(p0) → R ∪ {∞} is canonical if and only if it can be written as

c(π) = sup
ψ∈Ψ

∫
ψdπ (1)

where Ψ is a set of convex functions ψ : ∆(Ω) → R ∪ {∞}, such that

1. maxψ∈Ψ ψ(p0) = 0, and

2. Ψ is minimal—there is no Ψ̂ ⊂ Ψ such that supψ∈Ψ

∫
ψdπ = supψ∈Ψ̂

∫
ψdπ and |Ψ̂| < |Ψ|.4

Proof. See Appendix A.1.

3The value of ∞ is assigned to those distributions over posteriors that should never be acquired, representing impossible
information. This could alternatively be modeled as a restriction on the domain of the cost function.

4We define |Ψ| ∈ N ∪ {∞} as the cardinality of the set Ψ, without making distinction between countable and uncountable
infinities.
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The main result in De Oliveira et al. (2017) is an axiomatic characterization of rationally inattentive

preferences. The following properties will be useful for us:

1. If F ⊆ G then V (ϕF ) ≤ V (ϕG);

2. For any menu F and act h,

V (ϕF + ϕh) = V (ϕF ) + ϕh(p0).

2.2 Posterior-Separable Cost

Our goal in this paper is to understand a more specific class of costs of information, which we introduce now.

Definition 1. The cost of information c : Π(p0) → R∪ {∞} is said to be posterior separable if there exists

an absolutely integrable function ψ : ∆(Ω) → R ∪ {∞} such that, for all π ∈ Π(p0),

c(π) =

∫
ψ(p)π(dp).

In this case, we say that c is represented by ψ, or that ψ is a representation of c, and call ψ a measure of

uncertainty.

In the remainder of this subsection, we propose a class of functions ψ that have certain properties that

are convenient to use and without loss of generality. Given a measure of uncertainty ψ, let

domψ = {p ∈ ∆(Ω) | ψ(p) <∞} .

Definition 2. A measure of uncertainty ψ : ∆(Ω) → R ∪ {∞} is canonical if:

1. ψ is convex;

2. ψ(p0) = 0;

3. ψ ≥ 0.

4. p0 ∈ ri(domψ);

Before stating our formal result, we discuss some intuition for why these properties can be assumed

without loss of generality. Convexity follows from Blackwell monotonicity of c. Property 2 follows from

groundedness of c. Property 3 is a normalization that can be achieved by noting that adding an affine

function to ψ that is zero at p0 does not affect the cost of information. These first three properties are well

known and often assumed whenever posterior-separable costs are used. To our knowledge, Property 4 is new.

p0 dom ψ

Figure 1: p0 not in relative interior

To see why it can be assumed without loss of generality,

suppose that p0 is not in the relative interior, as in Fig-

ure 1. There, p0 lies in the vertical line that describes the

left of the boundary of domψ. Any π that puts positive

probability on the right side of the line must also put pos-

itive probability on the left side of the line, where ψ = ∞,

hence c(π) = ∞. Thus, if c(π) < ∞, it must be that the

support of π is contained within the vertical line. This
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means that nothing is lost by redefining the domain of ψ

to be just the vertical line.

Below, we state the formal result, which also includes

a sufficient condition for uniqueness.

Proposition 3. Let the information cost function c be canonical, as defined in Proposition 1. Suppose that

c is posterior separable and represented by ψ. Then there exists a canonical measure of uncertainty ψ̃ such

that c is represented by ψ̃. Moreover, if ψ is convex and differentiable in the directions of its domain at p0,

then ψ̃ is unique.

Proof. See Appendix A.2.5

From here onward, unless specified otherwise, we restrict our focus to posterior-separable costs that have

a canonical measure of uncertainty.

2.3 Concavification

If the cost of information is posterior separable, we can write

V (ϕF ) = max
π∈Π(p0)

∫
NF (p)π(dp)

where NF = ϕF −ψ is the net utility. This parallels the objective in Bayesian persuasion, where the sender’s

objective is to find the optimal distribution with respect to the integrand. The optimum is found by taking

the concavification of NF , i.e.

V (ϕF ) = cav(NF )(p0) = inf{ζ(p0) : ζ ≥ NF , ζ concave}.

One can then use the techniques of finding the optimum from Bayesian persuasion, as found in Aumann and

Maschler (1995) and Kamenica and Gentzkow (2011).

2.4 Dimension of Domain

As will become clear as we develop the main result, it will be useful to embed dom(ψ) in a space that has the

same dimension. To this end, let aff(dom(ψ)) be the affine hull of dom(ψ) (the smallest affine set containing

it) and let M be the dimension of this space. By Rockafellar (1970), Theorem 1.6, there exists a bijective

affine transformation

T : aff(dom(ψ)) → RM (2)

For instance, in the case of full domain, where dom(ψ) = ∆(Ω) ⊂ RΩ, one can define such a T as

mapping to R|Ω|−1 by setting Ti(p) = p(ωi) for i ∈ {1, ..., |Ω| − 1}, implicitly determining the probability of

the remaining state ω|Ω| as 1−
∑
i<|Ω| p(ωi).

Given any ψ : ∆(Ω) → R ∪ {∞}, we define T ∗ψ : RM → R ∪ {∞} by

T ∗ψ(y) =

ψ(T−1(y)), y ∈ T (dom(ψ))

∞, otherwise
(3)

5The proof uses a construction shown in section 2.4, so the reader is advised to read that section before reading the proof.
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We call T ∗ψ the translation of ψ to RM . Notice that, since T is a linear transformation, the properties of a

canonical ψ are slightly modified by T ∗ψ as follows:

1. T ∗ψ is convex;

2. T (p0) ∈ int(T (dom(ψ));

3. T ∗ψ(T (p0)) = 0;

4. T ∗ψ ≥ 0.

Notice, in particular, that since dim(T (dom(ψ))) =M , T (p0) is now in the interior of T (dom(ψ)), not just

the relative interior. To economize on notation, we write ψ̄ := T ∗ψ, p̄ := T (p), and Y := T (dom(ψ)).

2.5 Unique Hyperplane Property

In this section, we present an alternative description of concavification, equivalent to that presented in

Section 2.3. This relies on the supporting hyperplane of the concave function cav(NF ), so that all values

of the function lie below this hyperplane.6 We use this representation of the concavification to develop key

properties of our cost function representation.

Let T be as in (2). For any hyperplane H ∈ RM+1, let λ be its normal vector. Define N∗
F : RM → R by

N∗
F (y) =

NF (T−1(y)), y ∈ Y

−∞, otherwise
(4)

An equivalent formula for the concavification for a given prior p0 is7

cav(N∗
F )(p̄0) = min

λ∈RM

k∈R

{λ · p̄0 + k : λ · y + k ≥ N∗
F (y), ∀y ∈ Y }. (5)

A pair (λ, k) is a solution to the minimization problem above if λ · y + k ≥ N∗
F (y) for all y ∈ Y and

λ · p̄0+k = cav(N∗
F )(p̄0) = V (ϕF ). Thus, we can solve for k in this expression and denote the set of solutions

to (5) by

ΛF =
{
λ ∈ RM |λ · (y − p̄0) + V (ϕF ) ⩾ N∗

F (y), ∀y ∈ Y
}

By Rockafellar (1970), Theorem 23.2, ΛF is closed, convex, and non-empty. Geometrically, the elements of

ΛF are the normal vectors of hyperplanes that are tangent to the graph of N∗
F (see fig. 2). When N∗

F is

well-behaved (in a sense that will be made precise shortly), this set is a singleton, motivating the following

definition:

Definition 3. ψ satisfies the unique hyperplane property (UHP) if, for all menus F , ΛF is a singleton.

2.6 Joint-directional Differentiability

As will become clear later, the unique hyperplane property is related to a notion of differentiability that we

now discuss.

6This is analogous to the “Lagrangian lemma” of Caplin, Dean, and Leahy (2022).
7This follows from Rockafellar (1970), Theorem 18.8, which states that any closed convex set in a Euclidean space is

the intersection of the closed half-spaces tangent to it. Since epi(− cav(NF )) is closed and convex, there exist such tangent
hyperplanes as described in (5) for p = p0.
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Definition 4. Let ψ̄ : Y → R ∪ {∞} be as defined in Section 2.4. The subdifferential of ψ̄ at y ∈ Y is

∂ψ̄(y) = {λ ∈ RM : λ · (q − y) ≤ ψ̄(q)− ψ̄(y),∀q ∈ Y }.

A convex function is differentiable if and only if its subdifferential is a singleton (Rockafellar (1970),

Theorem 25.1). To compare the subdifferentials at various points when they are not singletons, we introduce

the following property of ψ.

Definition 5. The function ψ̄ is non-differentiable in the direction δ ∈ RM \ {0} at {p̄i}Ki=1 if there exist

λi ∈ ∂ψ̄(p̄i) such that:

1. λi + δ ∈ ∂ψ̄(p̄i),∀i ∈ {1, ...,K} and

2. δ · (p̄i − p̄0) = 0,∀i ∈ {1, ...,K}.

We say that ψ̄ is non-differentiable in the same direction (NDISD) at {p̄i}Ki=1 if there exists a δ ∈ RM \ {0}
such that ψ̄ is non-differentiable in the direction δ at {p̄i}Ki=1.

Geometrically, we can think of an element of the subdifferential as the slope of a hyperplane that is

tangent to the graph of ψ̄ at the point p̄i. When there is more than one such tangent hyperplane, it means

that the function ψ̄ has a kink at that point, and we can think of the difference between the two slopes (δ)

as a direction of that kink, in the sense that one can wobble the hyperplane by adding δ and remain tangent.

The condition above states that at all the points {p̄i}Ki=1 there is a kink and that they all share a wobbling

direction δ. Thus, the direction δ is orthogonal to the convex hull of {p̄i − p̄0}Ki=1.

This definition will be useful in constructing menus that take advantage of the directions of non-

differentiability to violate our axioms. In particular, it enables us to define cost functions that are “sufficiently

smooth.”

Definition 6. Given prior p0, the function ψ satisfies joint-directional differentiability (JDD) if there do

not exist δ ∈ RM \ {0} and points {pi}Ki=1, with p0 ∈ co(p1, . . . , pK), such that ψ̄ is non-differentiable in the

direction δ at {p̄i}Ki=1.

Remark: Whether ψ satisfies JDD does not depend on the choice of T . Suppose T̂ is another choice.

Because T and T̂ have the same dimension in the domain and codomain, there must be an invertible linear

transformation A : RM → RM such that T̂ = A◦T . Letting A be the matrix associated with A, if λ ∈ ∂ψ̄(x),

then (A−1)⊺λ ∈ ∂(A ◦ T )∗ψ, where (A−1)⊺ is the transpose of the inverse of A.

3 Main Theorem

3.1 Axioms

Our main result relies on the following axioms.

Independence of Irrelevant Alternatives (IIA). If F ∼ F ∩G ∼ G then F ∼ F ∪G.

For any menus F and G, we always have F ∪ G ≿ F,G ≿ F ∩ G, because flexibility is never harmful.

When F ∼ F ∩G, we may say that the elements of F that do not belong to F ∩G are irrelevant: the DM can

achieve the same payoff even by ignoring these additional options. The axiom states that these irrelevant

options remain irrelevant when combined with other irrelevant options.

8



Ignorance Equivalence (IE). For every menu F, there exists an act h such that h ∼ F ∼ F ∪ h.

When faced with a singleton menu h, it is always optimal for the agent to acquire no information. The

act h in this axiom is just as good as F , yet it adds irrelevant flexibility to F . Thus, the act h can be thought

of as an ignorance equivalent—a version of the menu F that requires no information to be acquired.

First appearing in de Oliveira (2014), this property also appears in Müller-Itten, Armenter, and Stangebye

(2023), who coined the term “ignorance equivalent” to refer to h. The term comes from an analogy with

the role of a certainty equivalent in the context of decisions under risk. Indeed, in both contexts, a risk-

neutral principal can extract the most possible surplus by offering the equivalents: by offering the ignorance-

equivalent in the former, and by offering the certainty equivalent in the latter (i.e. fully insuring). The

ignorance equivalent also serves as a tool to see which actions might ever be chosen in an expanded menu:

when comparing F and F ∪{g}, it is sufficient to know that h, the ignorance equivalent, dominates g (i.e. is

better in every state) in order to conclude that g will never be chosen from F∪{g}, and therefore F ∼ F∪{g}.

3.2 Main Theorem

We can now state our main result:

Theorem 1. The following statements are equivalent:

1. ≿ is a rationally inattentive preference satisfying IIA and IE;

2. ≿ has a posterior-separable representation with a measure of uncertainty ψ satisfying joint-directional

differentiability.

3. ≿ has a posterior-separable representation with a measure of uncertainty ψ satisfying the unique hy-

perplane property.

3.3 Example

To see how the three statements in Theorem 1 are related, we present the following example. In particular,

we highlight the role that the unique hyperplane property has in our analysis, showing that, as the unique

hyperplane property is violated, this leads to a violation of IIA.

Consider a setup with two states, in which the prior p0 = 0.5 and the cost of information is given (Figure

1a) by

ψ(p) = |p− 0.5|+ (p− 0.5)2

As ψ is non-differentiable at the prior, it violates joint directional differentiability. Indeed, with the menu

F = {0}, there are multiple optimal hyperplanes, all of which yield V (F ) = 0. Now suppose we consider

two new actions {a, b}, with respective payoffs u(a, p) = 2.5p − 1.3125 and u(b, p) = −2.5p + 1.1875. One

easily verifies that the DM is indifferent between the menus {0}, {0, a}, and {0, b}, as seen by the fact that

all three generate respective optimal hyperplanes λ such that the value of λ at p0 = 0.5 is 0 (Figures 1b

and 1c). However, if we take the union {0, a, b}, the optimal hyperplane changes: it now becomes optimal

to choose posteriors p ∈ {0, 1} (Figure 1d), yielding a value of the menu of 0.375. As a and b are therefore

only relevant when we take the union of the menus, but not when we add them individually to 0, IIA is not

satisfied.
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(a) ψ that is NDISD

1

p

u

(b) Optimal hyperplanes of menu {0, a}

1

p

u

(c) Optimal hyperplanes of menu {0, b}
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(d) Improvement for taking union {0, a, b}

Figure 2: Posterior-separable cost function violating IIA

4 Proof

In this section, we present a proof of our main result. To do so, we build on the connections that we

illustrated in the example in Section 3.3 between our two axioms and cost functions ψ that satisfy UHP

(alternatively, JDD). For a high-level discussion of the role that each axiom plays in restricting the cost of

information, see Section 5.

The proof goes as follows. Section 4.1 shows that, together, IIA and IE imply that ≿ has a posterior-

separable representation. From this point on, all sections assume a posterior separable representation.

Section 4.2 shows that the unique hyperplane property implies joint-direction differentiability and Section 4.5

shows that joint-directional differentiability implies the unique hyperplane property, proving the equivalence

between (2) and (3) of Theorem 1. Then, Section 4.3 shows that IIA implies joint-directional differentiability;

together with Section 4.1, this shows that (1) implies (2). Finally, Section 4.4 shows that the unique

hyperplane property implies IIA and IE, showing that (3) implies (1) and finishing the proof.

4.1 Posterior-separable representation

Throughout this subsection, assume that the rationally inattentive preference ≿ satisfies IIA and IE. We

will show that this implies that it has a posterior separable representation.

Let H be the set of acts that are irrelevant to the singleton {0}, that is,

H = {h ∈ F : 0 ∼ {0, h}} . (6)
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Lemma 1. For any menu F , we have F ⊆ H if and only if 0 ∼ F ∪ {0}.

Proof. If f ∈ F , we always have F ∪ {0} ≿ {0, f} ≿ 0, so 0 ∼ F ∪ {0} implies f ∈ H. The other direction

can be proven by induction on the size of F . Let F = {f1, f2 . . . , fn} ⊆ H. If F has one element, the result

follows from the definition of H. Now let Fn = Fn−1 ∪ {fn} be of size n and assume that the result holds

for menus of size n− 1. Then we have Fn−1 ∪ {0} ∼ 0. Since fn ∈ Fn ⊆ H, it follows that 0 ∼ {0, fn}. By

IIA, we must have Fn ∪ {0} = Fn−1 ∪ {0, fn} ∼ 0, as we wanted.

To simplify notation, we now write

⟨ϕ, π⟩ =
∫
ϕ dπ

for any integrable function ϕ.

Lemma 2. The cost function c is given by

c (π) = sup

F ⊆ H
0 ∈ F

⟨ϕF , π⟩ .

Proof. Let F be any menu. By IE, there exists an act h such that h ∼ F ∼ F ∪ h. Note that, since ϕh is

an affine function, ϕF∪h − ϕh is a piecewise linear convex function. Since u is surjective, there is a menu G,

with 0 ∈ G, such that ϕG = ϕF∪h − ϕh. This menu G satisfies two important properties: First,

V (ϕG) = V (ϕF∪h − ϕh) = V (ϕF∪h)− ϕh(p0) = V (ϕh)− ϕh(p0) = 0.

This means that 0 ∼ G ∪ 0 = G, so that G ⊆ H. Second, for any π ∈ Π(p0), we have ⟨ϕG, π⟩ =

⟨ϕF∪h − ϕh, π⟩ = ⟨ϕF∪h, π⟩ − ϕh (p0) and therefore

⟨ϕG, π⟩ − V (ϕG) = ⟨ϕF∪h, π⟩ − V (ϕF∪h) ≥ ⟨ϕF , π⟩ − V (ϕF ) ,

since V (ϕF ) = V (ϕF∪h) and ϕF∪h ≥ ϕF . Therefore, using the formula for the cost function in Theorem 2

of De Oliveira et al. (2017),

c (π) = sup
F∈F

⟨ϕF , π⟩ − V (ϕF ) = sup

G ∈ F
0 ∈ G

V (ϕG) = 0

⟨ϕG, π⟩ − V (ϕG) = sup

G ⊆ H
0 ∈ G

⟨ϕG, π⟩ ,

since F ⊆ H and 0 ∈ F implies V (ϕF ) = 0.

Finally, we can prove the posterior separability of the cost function.

Lemma 3. We can write c (π) = ⟨ψ, π⟩, where ψ : ∆ (Ω) → R is given by

ψ (p) = sup
h∈H

∑
ω

u(h(ω))p(ω) (7)

where H is defined as in (6).
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Proof. For any menu F ⊆ H, we have ϕF ⩽ ψ, so that

c (π) = sup

F ⊆ H
0 ∈ F

⟨ϕF , π⟩ ⩽ ⟨ψ, π⟩ .

To show the converse inequality, fix ϵ > 0 and π ∈ Π(p) with support p1, . . . , pn. Suppose first that

ψ(pi) <∞ for i = 1, . . . , n. From the definition of ψ, we can find h1, . . . , hn such that

ψ (pi) < ⟨hi, pi⟩+ ϵ for i = 1, . . . , n.

Letting F = {0, h1, . . . , hn} we have

c (π) ⩾ ⟨ϕF , π⟩ ⩾
∑
i

⟨hi, pi⟩π(pi) > ⟨ψ, π⟩ − ϵ.

Since ϵ was chosen arbitrarily, this shows that c (π) ⩾ ⟨ψ, π⟩.
Suppose now that ψ(pi) = ∞ for some i. Then there must be a sequence (hn)

∞
n=1 of acts in H such that

ϕhn
(pi) → ∞. Letting Gn = {0, hn} we have that

c(π) ⩾ sup
n∈N

⟨ϕGn , π⟩ ⩾ sup
n∈N

ϕhn(pi)π(pi) = ∞,

finishing the proof.

4.2 Unique Hyperplane Property implies Joint-Directional Differentiability

We prove the contrapositive: if ψ does not satisfy JDD, then it does not satisfy UHP. Thus, suppose there

are8 {pi}Ki=1 ⊂ domψ, δ ∈ RM \ {0}, and λi ∈ RM such that

1. λi ∈ ∂ψ̄(p̄i),

2. λi + δ ∈ ∂ψ̄(p̄i),

3. δ · p̄i = 0 for all i, and

4. p0 ∈ co(p1, . . . , pK).

In order to demonstrate the violation of UHP, we will construct a menu for which it is optimal for the DM

to choose information whose support is precisely {pi}Ki=1, and that the UHP will fail for this menu.

Lemma 4. Given conditions (1)-(4) above, there exists a menu H such that

1. there is an optimal distribution over posteriors for H with support on {pi}Ki=1;

2. 0,−δ ∈ ΛH .

Proof. For each i, let hi : Ω → X be such that
∑
ω∈Ω u(hi(ω))p(ω) = λi · (p̄− p̄i)+ ψ̄(p̄i) for every p ∈ ∆(Ω)

(since the image of u is R and the right hand side is an affine function of p, this is always possible). Defining

8Recall that for any p ∈ dom(ψ), we define p̄ = T (p) ∈ Y (see Section 2.4).
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the menu H = {h1, . . . , hK}, we have

ϕH(p) = max
hi∈H

∑
ω∈Ω

u(hi(ω))p(ω) = max
i
λi · (p̄− p̄i) + ψ̄(p̄i).

Spelling out the definition of subdifferential in condition (1), we have λi · (p̄ − p̄i) ≤ ψ̄(p̄) − ψ̄(p̄i) for

i = 1, . . . ,K. This implies that ϕH(p) ≤ ψ̄(p̄) for all p ∈ ∆(Ω), which in turn implies N∗
H ≤ 0. Moreover,

N∗
H(p̄i) = 0 for i = 1, . . . ,K. Since p0 ∈ co(p1, . . . , pK), this implies that cav(N∗

H)(p̄0) = 0, so 0 ∈ ΛH .

Similarly, spelling out the definition of subdifferential in condition (2), we have (λi + δ) · (p̄ − p̄i) ≤
ψ̄(p̄)−ψ̄(p̄i) for i = 1, . . . ,K. This implies that ϕH(p) ≤ ψ̄(p̄)−δ·(p̄−p̄i) for all p ∈ ∆(Ω). Since δ·(p̄i−p̄0) = 0

for all i, it follows that N∗
H(p̄) ≤ −δ · (p̄ − p̄0) for all p̄ ∈ Y . Moreover, N∗

H(p̄i) = 0 = −δ · (p̄i − p̄0) for

i = 1 . . . ,K. As before, this implies that −δ ∈ ΛH . Since δ ̸= 0, this shows that the unique hyperplane

property is not satisfied.

4.3 IIA implies JDD

We now show that, if the preference has a posterior-separable representation and satisfies IIA, the canonical

cost function ψ will satisfy JDD.

We start with a preliminary lemma regarding the subdifferentials of sets of points that are NDISD.

Lemma 5. The set

D({p̄i}Ki=1) :=
⋂
i

(
∂ψ̄(p̄i)− ∂ψ̄(p̄i)

)
∩ p̄⊥i . (8)

is compact and convex. Moreover, ψ̄ is non-differentiable in the direction δ at at {p̄i}Ki=1 if and only if

δ ∈ D({p̄i}Ki=1).

Proof. See Appendix A.3.

Lemma 6. Suppose ≿ has a posterior separable representation with a ψ that violates JDD. Then ≿ violates

IIA.

We use these properties of the set to construct a violation of IIA, generalizing the intuiting in the example

in Section 3.3. That is, when JDD fails, one can find two different acts that, when added to the original

menu, preserve the original respective hyperplanes, and hence the value. However, when adding both, the

new concavification lies strictly higher. This is in contradiction to IIA, which states that it must continue

to provide the original value of the menu.

Proof. By Lemma 5, the set D({p̄i}Ki=1) is compact, convex, and contains a non-null linear functional. Let

δ be an extreme point in this set. Note that if δ ∈ D({p̄i}Ki=1), then so is −δ.
Let H be a set of acts as given by Lemma 4, so that 0,−δ ∈ ΛH . Let ϵ ∈ RM be a sufficiently small

vector such that

1. p̄0 + ϵ, p̄0 − ϵ ∈ Y ;

2. δ · ϵ > 0.
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Such an ϵ exists because the orthogonal complement ofD({pi}Ki=1) does not have full rank. Let α ∈ ∂ψ(p̄0+ϵ)

and β + δ ∈ ∂ψ̄(p̄0 − ϵ). Then

α · p̄− ψ̄(p̄) ⩽ α · (p̄0 + ϵ)− ψ̄(p̄0 + ϵ) = 0

(β + δ) · p̄− ψ̄(p̄) ⩽ (β + δ) · (p̄0 − ϵ)− ψ̄(p̄0 − ϵ) = 0

We now define two other menus:

F = {fα} ∪H

G = {fβ} ∪H.

where fα is defined so that ∑
ω∈Ω

u(fα(ω))p(ω) = α · (p̄− p̄0 − ϵ) + ψ̄(p̄0 + ϵ)

holds for every p ∈ dom(ψ), and similarly for fβ ,∑
ω∈Ω

u(fβ(ω))p(ω) = β · (p̄− p̄0 + ϵ) + ψ̄(p̄0 − ϵ) + δ · ϵ.

Notice that 0 ∈ ΛH and since α·(p̄−p̄0−ϵ)+ψ̄(p̄0+ϵ)−ψ̄(p̄) ⩽ 0, it remains in ΛF , and so the concavification

still yields V (ϕF ) = 0 by (5). Likewise, −δ ∈ ΛH and since β·(p̄−p̄0+ϵ)+ψ̄(p̄0−ϵ)−ψ̄(p̄)+δ·ϵ ⩽ −δ·(p̄−p̄0), it
remains in ΛG, and so the concavification still yields V (ϕG) = 0. Thus, all three menus—F ,G, and H—give

the same value of zero.

Now consider γ ∈ RM and k ∈ R such that γ · p̄+ k ⩾ N∗
F∪G(p̄) for all p̄. We must have

γ · (p̄0 + ϵ) + k ⩾ α · (p̄0 + ϵ− p̄0 − ϵ) + ψ̄(p̄0 + ϵ)− ψ̄(p̄0 + ϵ) = 0

γ · (p̄0 − ϵ) + k ⩾ β · (p̄0 − ϵ− p̄0 + ϵ) + ψ̄(p̄0 − ϵ) + δ · ϵ− ψ̄(p̄0 − ϵ) = δ · ϵ > 0.

Together, these inequalities imply that γ · p̄0 ≥ 1
2δ · ϵ > 0, so whatever is the optimal hyperplane for F ∪G, it

must get a value strictly greater than zero at p̄0, meaning that V (ϕF∪G) > 0. This shows that our preference

violates IIA.

4.4 Unique Hyperplane Property implies IIA and IE

We now show that if a preference has a posterior-separable representation and satisfies the Unique Hyperplane

Property, then it must satisfy IIA and IE. Let F andG be menus such that F∩G ∼ F ∼ G. Assuming that the

unique hyperplane property is satisfied, we may write ΛF = {λF }, ΛG = {λG}, and ΛF∩G = {λF∩G}. Since
F ∩G ∼ F ∼ G, and the optimal posteriors for F ∩G are also feasible for F and G, the optimal hyperplane

for F ∩ G must also be an optimal hyperplane for both F and G. By the unique hyperplane property, the

optimal hyperplanes must therefore identical: λF = λF∩G = λG. This implies that for all f ∈ F ∪ G and

p ∈ ∆(Ω), λF · (p̄− p̄0) + V (ϕF ) ⩾
∑
ω u(f(ω))p(ω)− ψ(p) so that λF · (p̄− p̄0) + V (ϕF ) ⩾ N∗

F∪G(p̄). and

so λF is the (unique) optimal hyperplane for F ∪G.
To show that IE is satisfied, let λF be the optimal hyperplane for menu F . Defining act h such that

M⊺
Th = λF +∂ψ̄(p̄0), where MT is the matrix representing linear transformation T , and ∂ψ̄(p̄0) is a singleton
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by joint directional differentiability, we get that M⊺
Th · p̄− ψ̄(p̄) ≤ λF · p̄,∀p̄ ∈ Y . □

4.5 Joint-directional Differentiability implies the Unique Hyperplane Property

Suppose the preference has a posterior-separable representation where ψ is joint-directional differentiable.

Let F := {fi}Ki=1 be an arbitrary menu. For each i, let ai ∈ RM and bi ∈ R be such that
∑
ω∈Ω u(fi(ω))p(ω) =

ai · p̄ + bi for all p ∈ domψ. Let {pi}Ii=1 be the support of an optimal distribution over posteriors for F ,

so p0 ∈ co{pi}Ii=1. We can assume, without loss of generality, that no act in F is optimal for more than

one posterior belief; for simplicity, we label the acts so that fi is optimal for pi for I ≤ K (relabeling any

unchosen acts to have i > K). Then there exists λ ∈ ΛF such that, for i = 1, . . . , I,

NF (p̄i) = ai · p̄i + bi − ψ̄(p̄i) = λ · (p̄i − p̄0) + V (ϕF )

and

ai · p̄+ bi − ψ̄(p̄) ⩽ λ · (p̄− p̄0) + V (ϕF )

for all p̄ ∈ Y . Subtracting the equality from the inequality, we get

(ai + λ) · (p̄− p̄i) ⩽ ψ̄(p̄)− ψ̄(p̄i),

which means that λi := ai + λ ∈ ∂ψ̄(p̄i). If there existed a second hyperplane λ̂, we could repeat the same

argument, and letting δ = λ− λ̂, we would get that

λi + δ = λ̂i ∈ ∂ψ̄(p̄i)

δ · (p̄i − p̄0) = λi · (p̄i − p̄0)− λ̂i · (p̄i − p̄0)

= [N∗
F (p̄i)− V (ϕF )]− [N∗

F (p̄i)− V (ϕF )] = 0

So, ψ̄ would be NDISD at {p̄i}Ii=1, contradicting our assumption. □

5 Discussion of Main Theorem

As was noted when we introduced canonical costs, it is without loss to write c(π) = supψ∈Ψ

∫
ψdπ. For this

discussion, we explore the implications of our axioms when the set Ψ is finite.9 Then, we not only have

ψ(p0) ≤ 0 for all ψ ∈ Ψ, but also have equality for at least one ψ ∈ Ψ. We may also assume that Ψ is

minimal.

For any finite menu H, let πH ∈ Π(p0) be an optimal information choice given that menu. Define

ψH ∈ argmaxψ∈Ψ

∫
ψdπH ; by the minimality of Ψ, there will be at least one menu H for which ψH is the

unique maximizer.

IE, Ignorance Equivalence, comes to rule out that there exist ψ∗ ∈ Ψ such that ψ∗(p0) < 0. To see this,

suppose that such a ψ∗ ∈ Ψ exists. Let Ψ0 = {ψ ∈ Ψ|ψ(p0) = 0}, which is nonempty by Proposition 2. By the

minimality of Ψ, there is some menu F ∗ such that c(πF∗) =
∫
ψ∗dπF∗ and, for all ψ ̸= ψ∗, c(πF∗) <

∫
ψdπF∗ .

9Notice that, by definition of supremum, one can approximate the cost function c by a finite set Ψ̂ ⊂ Ψ, defining a cost
function ĉ(π) ≡ maxψ∈Ψ̂

∫
ψdπ, as follows. In a case where c(π) is finite, then there exists a sufficiently large, finite Ψ̂ ⊂ Ψ

such that c(π) < ĉ(π) + ϵ. if c(π) = ∞, then for sufficiently large Ψ̂, π is dominated by δp0 .
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Let δ := min{−ψ∗(p0),minψ ̸=ψ∗ c(πF∗)−
∫
ψ dπF∗}.

For any h such that h ∼ F ∗, one will have πh = δp0 and hence ψh ∈ Ψ0. Consider now the menu F ∗∪{h}.
By choosing π′ := 1

2πF∗ + 1
2δp0 , one can save on information costs: from the fact that ψ∗ /∈ Ψ0 and the

representation of c convex as in Proposition 2, there exists ψ′ ∈ Ψ such that

c(π′) =

∫
ψ′dπ′

≤ 1

2

∫
ψ∗dπF∗ +

1

2
ψh(p0)−

1

2
δ

≤ 1

2
c(πF∗)− 1

2
δ (9)

However, by the monotonicity of the indirect utility from the decisions in the menu size, due to the preference

for flexibility, ∫
ϕF∗∪{h}dπF∗∪{h} ≥ 1

2

∫
ϕF∗dπF∗ +

1

2
ϕh(p0), (10)

Therefore,

V (ϕF∗∪{h}) ≥
1

2

∫
ϕF∗dπF∗ +

1

2
ϕh(p0)− c(π′)

≥ 1

2
[

∫
ϕF∗dπF∗ −

∫
ψ∗dπF∗ ]− 1

2
[ϕh(p0)] +

1

2
δ

= V (ϕF∗) +
1

2
δ

where the last equality is from h ∼ F ∗. So, F ∗ ∪ {h} ≻ F ∗, violating IE.

On the other hand, there is no problem with IE if Ψ = Ψ0. In this case, for a given ψF∗ , the act h is

consistent with ψF∗ itself, and so there are no savings of information costs to be had by randomizing.

The presence of IE allows for IIA to have bite. Without IE, it is unclear whether there will actually

be any menus F,G with ψF ̸= ψG such that F ∩ G ̸= ∅; if that were so, then in such cases, IIA holds

vacuously for F,G. However, with IE, we know that ψF (p0) = ψG(p0) = 0. By IE, there exist h, h′ such

that h ∼ F ∼ F ∪ {h} and h′ ∼ G ∼ G∪ {h′}. Since adding an affine function α to the payoffs of all acts in

the menu does not change the optimal choice of information, and changes the value of the menu by α · p0,
one can replace G ∪ {h′} with Ĝ ∪ {h} by letting α = h − h′, such that ψG = ψĜ and F ∼ G. As a result,

under IE, if there are ψF ̸= ψG, then there are corresponding F,G such h ∼ F ∼ F ∪ {h} ∼ G ∪ {h} ∼ G.

Note that ψF = ψF∪{h} and ψG = ψG∪{h} since πF and πG are optimal information choices for F ∪ {h} and

G ∪ {h}, respectively.
Given such F,G, then by taking F ∪G∪ {h}, IIA dictates that F ∼ F ∪G∪ {h}. However, if ψF ̸= ψG,

this is not the case: one can save on the information cost by randomizing 1
2πF + 1

2πG, while keeping the

expected utility from the decisions the same, similarly to the cost saving/expected utility preservation due

to IE in equations (9) and (10). So, ψF = ψG.

6 Uniform Posterior-Separable Costs

We now allow for the agent’s prior to vary. For each possible prior p0 ∈ ∆(Ω), we denote the cost of

information by cp0 : Π(p0) → R∪{∞}. For each π ∈ ∆(∆(Ω)), we can deduce the corresponding prior p0 by

taking the expectation of π, so that π ∈ Π(p0). Thus, we may write the cost function for all priors under a
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single notation c : Π → R. We call c canonical if, for each p0, cp0 is canonical. We now consider the following

condition that allows for the costs to be “the same” across menus.

Definition 7. The canonical cost function c : ∆(∆(Ω)) → R ∪ {∞} is prior invariant with respect to the

set Ψ of convex functions that represents c if

c(π) = sup
ψ∈Ψ

∫
ψ dπ − sup

ψ′∈Ψ
ψ′

(∫
p dπ

)
.

When Ψ is a singleton, we say that c is uniformly posterior separable.

Note that if c is canonical then, by Proposition 2, for every p0 there exists a set of convex functions Ψp0

such that

c(π) = sup
ψ∈Ψp0

∫
ψ dπ = sup

ψ∈Ψp0

∫
ψ dπ − max

ψ′∈Ψp0

ψ′(p0).

Prior-invariance imposes that the same set Ψ applies to every p0. Note that we need to subtract the second

term to guarantee that cp0 is grounded for every p0.

The quintessential uniformly posterior-separable cost is the mutual information (Sims, 2003; Caplin,

Dean, and Leahy, 2022). Denoting the entropy of a distribution by H(p) = −
∑
ω p(ω) ln(p(ω)), mutual

information is given by the expected reduction in entropy,

cp0(π) = H(p0)−
∫
H(p) π(dp),

which matches the formula in definition 7 by setting Ψ = {−H}.

Theorem 2. For a fixed prior p0, let Ψ be a set of convex functions representing cp0 satisfying the conditions

of Proposition 2. Let the canonical cost function c be prior-invariant with respect to Ψ. If, for each prior,

the preference over menus corresponding to c satisfies IIA and IE, then c is uniformly posterior separable

and represented by some ψ : ∆(Ω) → R ∪ {∞} that is differentiable at all p ∈ ri(dom(ψ)).

Proof. By Theorem 1, the cost function cp0 is posterior separable. Since Ψ is minimal for cp0 , we must have

Ψ = {ψ} for some convex ψ : ∆(Ω) → R ∪ {∞}. Since c is prior-invariant, we must have that, for all priors

q ∈ ∆(Ω) and π ∈ Π(q),

cq(π) = sup
ψ′∈Ψ

∫
ψ′(p)dπ − sup

ψ′′∈Ψ
ψ′′ (q) =

∫
ψ(p)dπ − ψ(q),

so c is uniformly posterior separable.

To see that ψ must be differentiable, suppose, to the contrary, that it is not differentiable at some

q ∈ ri(dom(ψ)). Fixing the prior to be q, we have, by Theorem 1, that the preference ≿, satisfying IIA

and IE, has a posterior separable representation with a canonical measure of uncertainty ψ̂ that satisfies

joint-directional differentiability. Thus for every π ∈ Π(q),∫
ψ̂ dπ =

∫
ψ dπ − ψ(q) =

∫
[ψ(p)− ψ(q)] π(dp).

By Lemma 7 in Appendix A.2, there exists ξ such that

ψ̂(p) = ψ(p)− ψ(q) + ξ · (p− q).
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Since ψ̂ satisfies joint-directional differentiability, it must be differentiable at q (simply pick K = 1 and

{pi}Ki=1 = {q} and we trivially have q ∈ co({q})). This implies that ψ is differentiable at q, contradicting its

non-differentiability.
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A Appendix

A.1 Proof of Proposition 2

By De Oliveira et al. (2017), Theorem 2, the cost of information can be written as

c(π) = sup
F∈F

∫
ϕF (p)dπ(p)− V (F )

Notice that for each F , ϕF − V (F ) is a convex function, and so one can let Ψ = {ϕF − V (F ) : F ∈ F} to

establish

c(π) = sup
ψ∈Ψ

∫
ψdπ

Write Ψ′ ∼ Ψ to denote the equivalence relation that says that Ψ′ and Ψ represent the same cost function

c. We now show that there exists a Ψ′ ∼ Ψ satisfying properties 1 and 2 in the proposition. To do so, we

divide in two cases:

1. Suppose that there exists a finite Ψ′ ∼ Ψ. If Ψ′ is minimal, we are done; if not, there exists a Ψ′′ with

|Ψ′′| < |Ψ| such that Ψ′′ ∼ Ψ′ ∼ Ψ. We can then repeat the same argument, until we reach a minimal

Ψ∗, which must happen in a finite number of steps since Ψ′ was finite. Since Ψ∗ is finite, the maximum

must always be achieved, and in particular c(δp0) = maxψ∈Ψ∗ ψ(p0) = 0.

2. Suppose that there is no finite Ψ′ ∼ Ψ. Then Ψ is already minimal. To satisfy condition (1), note that,

since c is grounded,

0 = c(δp0) = sup
ψ∈Ψ

ψ(p0),

and since c is also Blackwell monotone, c(π) ⩾ 0 for all π ∈ Π(p0). This means that if we add ψ0 ≡ 0

to Ψ, we get

sup
ψ∈Ψ∪{ψ0}

∫
ψ dπ = max

{
sup
ψ∈Ψ

∫
ψ dπ, 0

}
= max{c(π), 0} = c(π)

so Ψ ∪ {ψ0} ∼ Ψ, and

c(δp0) = ψ0(p0) = 0 = max
ψ∈Ψ∪{ψ0}

ψ(p0),

which is condition (1). Since |Ψ ∪ {ψ0}| = |Ψ| = ∞, condition (2) is also satisfied by Ψ ∪ {ψ0}.

A.2 Proof of Proposition 3

Let c be canonical and represented by ψ.

(1) It follows from Blackwell monotonicity that ψ must be convex (see Lipnowski and Ravid (2022), Lemma

24).

(2) From groundedness, it is immediate that ψ(p0) = 0.

(4) We now construct a ψ̂ that represents the same cost of information as ψ, satisfying p0 ∈ ri dom ψ̂.

If p0 ∈ ri domψ, we simply let ψ̂ = ψ. So suppose p0 /∈ ri domψ and let d = dim(domψ) denote the

dimension of domψ. Since p0 is on the boundary of domψ, by Rockafellar (1970), Theorem 11.6, there

exists a supporting hyperplane, defined by some vector λ, such that, letting

X := {p ∈ ∆(Ω) : λ · p ≥ λ · p0}
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we have that for all p ∈ X,

λ · p > λ · p0 =⇒ ψ(x) = ∞,

while X ∩ ri(dom(ψ)) = ∅, i.e. X only intersects with dom(ψ) on the boundary of the latter.

Now let

ψ̂(p) =

ψ(p), if p ∈ X

∞, otherwise

That is, ψ̂ replaces ψ(p) with ∞ for all p /∈ X. In particular, ψ̂(p) = ∞, ∀p ∈ ri(dom(ψ)). We shall show

that c(π) =
∫
ψ dπ =

∫
ψ̂ dπ for every π ∈ Π(p0). Indeed, if supp(π) ⊂ X, this is obviously true. When

supp(π) ̸⊂ X, by Bayes’ rule then, with positive probability according to π, λ · p > λ · p0, and therefore

ψ(p) = ∞. Consequently, c(π) = ∞ =
∫
ψ̂ dπ.

If p0 ∈ ri(dom(ψ̂)), we found our desired ψ̂. Otherwise, note that dim(dom(ψ̂)) < dim(dom(ψ)) and

repeat the procedure until p0 ∈ ri(dom(ψ̂)) or the dimension is zero (in which case the domain is just p0 and

the cost of information was trivial).

(3) Let T : aff(dom ψ̂) → RM be a bijective affine transformation as in Section 2.4. Since ψ̂ is convex,

so is T ∗ψ̂, so there exists a λ ∈ ∂T ∗ψ̂, that is, λ · (p̄ − p̄0) ⩽ T ∗ψ̂(p̄) = ψ̂(p) for all p ∈ dom ψ̂. Let

ψ̃(p) = ψ̂(p)− λ · (p̄− p̄0). Then ψ̃ ⩾ 0 and it inherits properties (1), (2), and (4) from ψ̂, so ψ̃ is canonical.

Also note that, for all π ∈ Π(p0),∫
ψ̃ dπ =

∫ [
ψ̂(p)− λ · (T (p)− T (p0))

]
π(dp) =

∫
ψ̂ dπ − λ · (T (p0)− T (p0)) = c(π).

Before proving the uniqueness of the canonical representation, we prove the following lemma.

Lemma 7. If ψ and ψ′ are canonical and
∫
ψ dπ =

∫
ψ′ dπ for all π ∈ Π(p0) then there exists a ξ ∈ R|Ω|

such that ψ(p) = ψ′(p) + ξ · (p− p0) for all p ∈ ∆(Ω).

Proof. We first prove that domψ = domψ′. Let p ∈ domψ be arbitrary. Then p0+ t(p− p0) ∈ aff domψ for

all t ∈ R. Since p0 ∈ ri domψ, we can find an ϵ > 0 small enough that p′ := p0 − ϵ(p − p0) ∈ domψ. Then

p0 is in the convex hull of {p, p′}, which means we can find a π ∈ Π(p0) with support {p, p′} ⊂ domψ. Then

c(π) =
∫
ψ dπ < ∞, which means that

∫
ψ′ dπ < ∞ as well, which can only happen if p ∈ domψ′. Hence

domψ ⊂ domψ′ and, by symmetry, domψ = domψ′. This proves that ψ(p) = ψ′(p) + ξ · (p − p0) for all

p /∈ domψ regardless of ξ since the finite term ξ · (p− p0) becomes irrelevant.

Now, for p ∈ domψ, let ζ(p) = ψ(p) − ψ′(p). Since ψ and ψ′ are canonical, ζ(p0) = 0. By Theorem

1.5 in Rockafellar (1970), the proof will be finished if we show that ζ is an affine function. To that end, let

α ∈ [0, 1] and x, y ∈ domψ. Suppose first that αx + (1 − α)y = p0. Then, letting π ∈ Π(p0) have support

{x, y}, we get

0 =

∫
ζ dπ = αζ(x) + (1− α)ζ(y).

Since ζ(αx+ (1− α)y) = ζ(p0) = 0, we have ζ(αx+ (1− α)y) = αζ(x) + (1− α)ζ(y).

Now suppose that αx+(1−α)y ̸= p0. Let ϵ > 0 be small enough that z = p0−ϵ(αx+(1−α)y−p0) ∈ domψ

(recall that p0 ∈ ri domψ). Letting t = (1 + ϵ)−1 ∈ (0, 1), we have that p0 = tz + (1 − t)(αx + (1 − α)y).

Thus there is a π ∈ Π(p0) with support on {z, αx+ (1− α)y} so that

0 =

∫
ζ dπ = tζ(z) + (1− t)ζ(αx+ (1− α)y). (11)
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Similarly, we may write p0 = tz + (1− t)αx+ (1− t)(1− α)y so there is a π′ ∈ Π(p0) with support {x, y, z}
putting probability t on z. Hence

0 =

∫
ζ dπ′ = tζ(z) + (1− t)αζ(x) + (1− t)(1− α)ζ(y). (12)

Putting together equations eq. (11) and eq. (12), we get that ζ(αx+(1−α)y) = αζ(x)+ (1−α)ζ(y). Thus,

we have shown that ζ is affine, which finishes the proof.

Finally, if ψ is differentiable in the directions of its domain at p0, so are ψ̂ and ψ̃. If ψ′ were another

canonical measure of uncertainty representing the same cost of information, then by Lemma 7, there would

be a ξ such that ψ̃(p) = ψ′(p) + ξ · (p − p0). Also, by the proof of Lemma 7, ψ̃ and ψ′ must have the

same domain, so we may use the same bijective affine transformation T for both. Since T ∗ψ′(p) ⩾ 0 and

T ∗ψ̃(p0) = 0, this would imply that T ∗ψ̃(p)−T ∗ψ̃(p0) ⩾ ξ̄ ·(p̄−p̄0), or ξ̄ ∈ ∂T ∗ψ̃. But since ψ̃ is differentiable

in the directions of its domain at p0, ξ̄ = 0 must be the only element in the subdifferential, meaning that

T ∗ψ̃ = T ∗ψ′, which implies that ψ̃ = ψ′.

A.3 Proof of Lemma 5

Notice that 0 ̸= δ ∈ D({p̄i}Ki=1) if and only if δ ∈ ∂ψ̄(p̄i) − ∂ψ̄(p̄i) and δ · (p̄i − p̄0) = 0 for each pi,

i = 1, . . . ,K, which is precisely the definition of ψ being non-differentiable in the direction δ. By Rockafellar

(1970, Theorem 23.2), ∂ψ̄(p̄i) is closed and convex; since this is preserved under subtraction and intersection,

so is D({p̄i}Ki=1). To show that D({p̄i}Ki=1) is compact, it remains to show that ∂ψ̄(p̄i) is bounded. By

condition (2) of non-differentiability in the same direction, we have (λ + δ)(p̄i − p̄0) = 0. Using Lemma 4,

fix a menu H for which the posteriors {pi}Ki=1 are optimal. Notice that in this case, if λ, λ′ ∈ ΛH , then since

for λ̂ ∈ {λ, λ′}
λ · (p̄i − p̄0) + V (ϕH) = N∗

H(p̄i),∀i

it follows that (λ− λ′) · (p̄i − p̄0) = 0. Therefore,

D({p̄i}Ki=1) = ΛH − ΛH

and so D({p̄i}Ki=1) is compact if ΛH is. Then, since δ · (p̄i − p̄0) = 0, V (ϕH) = λ · (p̄0 − p̄i) + N∗
F (p̄i) =

[λ + δ] · (p̄0 − p̄i) + N∗
F (p̄i), for all i ∈ {1, ...,K}, and therefore λ + δ is also an optimal hyperplane. By

way of contradiction, suppose ΛH were not compact, then by Rockafellar (1970, Theorem 8.4), there would

exist λ, δ ̸= 0 such that, for all t > 0, λ + tδ ∈ ΛH . Furthermore, as D({p̄i}Ki=1) has dimension at least 1,

its orthogonal complement does not have full rank (Rockafellar, 1970, p. 5). As a result, for all ϵ > 0, there

would exist p such that ∥p̄− p̄0∥ < ϵ, δ · (p̄− p̄0) < 0, and ϕ(p)− ψ(p) ≤ V (ϕH) + [λ+ tδ] · (p̄− p̄0), ∀t > 0,

which can only happen if ψ(p) = ∞. Thus, there would be a sequence {p̂j}∞j=1 ⊂ dom(ψ) such that

limj→∞ p̂j = p0 and ψ(p̂j) = ∞,∀j, contradicting the assumption that p0 ∈ ri(dom(ψ)) for ψ canonical with

dim(dom(ψ)) =M .
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